論文の概要: Predict+Optimize Problem in Renewable Energy Scheduling
- arxiv url: http://arxiv.org/abs/2212.10723v2
- Date: Mon, 14 Apr 2025 15:09:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:45:54.767962
- Title: Predict+Optimize Problem in Renewable Energy Scheduling
- Title(参考訳): 再生可能エネルギースケジューリングにおける予測+最適化問題
- Authors: Christoph Bergmeir, Frits de Nijs, Evgenii Genov, Abishek Sriramulu, Mahdi Abolghasemi, Richard Bean, John Betts, Quang Bui, Nam Trong Dinh, Nils Einecke, Rasul Esmaeilbeigi, Scott Ferraro, Priya Galketiya, Robert Glasgow, Rakshitha Godahewa, Yanfei Kang, Steffen Limmer, Luis Magdalena, Pablo Montero-Manso, Daniel Peralta, Yogesh Pipada Sunil Kumar, Alejandro Rosales-Pérez, Julian Ruddick, Akylas Stratigakos, Peter Stuckey, Guido Tack, Isaac Triguero, Rui Yuan,
- Abstract要約: 本稿では IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling のソリューションをベンチマークする。
光GBMアンサンブルを用いた最適化手法は、少なくとも2%のエネルギーコスト削減を実現した。
この研究の新規性は、現実の再生可能エネルギースケジューリング問題に適用される予測+方法論の包括的評価にある。
- 参考スコア(独自算出の注目度): 31.032838966665828
- License:
- Abstract: Predict+Optimize frameworks integrate forecasting and optimization to address real-world challenges such as renewable energy scheduling, where variability and uncertainty are critical factors. This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling, focusing on forecasting renewable production and demand and optimizing energy cost. The competition attracted 49 participants in total. The top-ranked method employed stochastic optimization using LightGBM ensembles, and achieved at least a 2% reduction in energy costs compared to deterministic approaches, demonstrating that the most accurate point forecast does not necessarily guarantee the best performance in downstream optimization. The published data and problem setting establish a benchmark for further research into integrated forecasting-optimization methods for energy systems, highlighting the importance of considering forecast uncertainty in optimization models to achieve cost-effective and reliable energy management. The novelty of this work lies in its comprehensive evaluation of Predict+Optimize methodologies applied to a real-world renewable energy scheduling problem, providing insights into the scalability, generalizability, and effectiveness of the proposed solutions. Potential applications extend beyond energy systems to any domain requiring integrated forecasting and optimization, such as supply chain management, transportation planning, and financial portfolio optimization.
- Abstract(参考訳): Predict+Optimizeフレームワークは予測と最適化を統合して、変動性と不確実性が重要な要因である再生可能エネルギースケジューリングのような現実的な課題に対処する。
本稿では,再生可能エネルギースケジューリングにおけるIEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Schedulingのソリューションをベンチマークし,再生可能エネルギーの生産と需要の予測とエネルギーコストの最適化に焦点をあてる。
この大会には合計49人の参加者が参加した。
最上位の手法は、LightGBMアンサンブルを用いた確率的最適化を採用し、決定論的手法と比較して少なくとも2%のエネルギーコスト削減を実現し、最も正確な点予測が下流最適化の最高の性能を保証するとは限らないことを示した。
公表されたデータと問題設定は、エネルギーシステムの統合予測最適化手法のさらなる研究のためのベンチマークを確立し、コスト効率で信頼性の高いエネルギー管理を実現するために最適化モデルにおける予測の不確実性を考慮することの重要性を強調している。
この研究の新規性は、現実の再生可能エネルギースケジューリング問題に適用された予測+最適化方法論の総合的な評価にあり、提案されたソリューションのスケーラビリティ、一般化可能性、有効性に関する洞察を提供する。
潜在的な応用はエネルギーシステムを超えて、サプライチェーン管理、輸送計画、金融ポートフォリオ最適化といった統合された予測と最適化を必要とするあらゆる領域に及んでいる。
関連論文リスト
- Energy-Efficient Scheduling with Predictions [4.662349748983561]
エネルギー効率のスケジューリングにおいて、オペレーティングシステムは、マシンがジョブを処理する速度を制御する。
学習強化アルゴリズムの最近の研究は、予測を利用して性能保証を改善することを目的としている。
所望のエネルギー効率スケジューリング問題に対して、オフラインとオンラインのアルゴリズムを入力として、フレキシブルな学習強化アルゴリズムフレームワークを提供する。
論文 参考訳(メタデータ) (2024-02-27T02:13:32Z) - Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach [3.124884279860061]
大規模容量拡大問題(CEP)は、地域エネルギーシステムのコスト効率の高い脱炭の中心である。
本稿では,2段階のCEPを抽出する学習支援近似解法を提案する。
本手法では, 直列集約法と比較して最大3.8%のコスト削減効果が得られた。
論文 参考訳(メタデータ) (2024-01-19T01:40:58Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
予測最適化(英: Predictive optimization)は、エネルギーコストを意識したスケジューリングや広告予算配分など、多くの現実世界のアプリケーションの正確なモデリングである。
我々は,広告のための新しい産業データセットを含む8つの問題に対して,既存のPtO/PnOメソッド11をベンチマークするモジュラーフレームワークを開発した。
本研究は,8ベンチマーク中7ベンチマークにおいて,PnOアプローチがPtOよりも優れていることを示すが,PnOの設計選択に銀の弾丸は見つからない。
論文 参考訳(メタデータ) (2023-11-13T13:19:34Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - How to predict and optimise with asymmetric error metrics [0.0]
本稿では,IEEE計算情報学会の第3回技術課題に言及して,予測と最適化の問題の概念を検討する。
この大会では、参加者は6つの建物と6つのソーラー施設で建設エネルギーの使用と発電を予測し、1ヶ月にわたってクラスとバッテリーをスケジューリングしながらエネルギーコストを最適化するためにその予測を利用するよう求められた。
予測・最適化フェーズにおける損失関数の異なる性質について検討し,最適化コストの向上のために最終予測を調整することを提案する。
論文 参考訳(メタデータ) (2022-11-24T13:16:45Z) - Optimal activity and battery scheduling algorithm using load and solar
generation forecasts [0.0]
5textsuperscriptth IEEE-CIS(IEEE Computational Intelligence Society)コンペティションは、建築活動のスケジューリングによる電力料金の引き下げという現実的な問題を提起した。
本稿では、太陽光発電と需要予測と最適スケジューリング問題に対処するための技術的シーケンスを提案し、そこでは、太陽光発電予測法と最適大学講義スケジューリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:26:21Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
文脈ベイズ最適化(CBO)は、与えられた側情報を逐次決定する強力なフレームワークである。
この設定では、学習者は各ラウンドでコンテキスト(天気条件など)を受け取り、アクション(タービンパラメータなど)を選択する必要がある。
標準的なアルゴリズムは、すべてのラウンドで意思決定を切り替えるコストを前提としませんが、多くの実用的なアプリケーションでは、このような変更に関連するコストが最小化されるべきです。
論文 参考訳(メタデータ) (2022-10-14T20:19:32Z) - Evolutionary scheduling of university activities based on consumption
forecasts to minimise electricity costs [0.9449650062296824]
本稿では,大学キャンパスの電力コスト削減を目標とする予測・最適化問題の解法を提案する。
提案手法は,多次元時系列予測と大規模最適化の新しいアプローチを組み合わせたものである。
論文 参考訳(メタデータ) (2022-02-25T10:18:56Z) - Stochastic Optimization Forests [60.523606291705214]
標準的なランダムな森林アルゴリズムのように予測精度を向上させるために分割するのではなく、分割を選択した木を栽培し、下流の意思決定品質を直接最適化することで、森林決定政策の訓練方法を示す。
概略分割基準は、各候補分割に対して正確に最適化された森林アルゴリズムに近い性能を保ちながら、100倍のランニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2020-08-17T16:56:06Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。