A brief introduction to quantum algorithms
- URL: http://arxiv.org/abs/2212.10734v1
- Date: Wed, 21 Dec 2022 03:00:25 GMT
- Title: A brief introduction to quantum algorithms
- Authors: Shihao Zhang and Lvzhou Li
- Abstract summary: We start from elucidating quantum parallelism, the basic framework of quantum algorithms and the difficulty of quantum algorithm design.
We then focus on a historical overview of progress in quantum algorithm research over the past three to four decades.
Finally, we clarify two common questions about the study of quantum algorithms, hoping to stimulate readers for further exploration.
- Score: 3.454865774480229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms are demonstrated to outperform classical algorithms for
certain problems and thus are promising candidates for efficient information
processing. Herein we aim to provide a brief and popular introduction to
quantum algorithms for both the academic community and the general public with
interest. We start from elucidating quantum parallelism, the basic framework of
quantum algorithms and the difficulty of quantum algorithm design. Then we
mainly focus on a historical overview of progress in quantum algorithm research
over the past three to four decades. Finally, we clarify two common questions
about the study of quantum algorithms, hoping to stimulate readers for further
exploration.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum Algorithm Based Heuristic to Hide Sensitive Itemsets [1.8419202109872088]
We present a quantum approach to solve a well-studied problem in the context of data sharing.
We present results on experiments involving small datasets to illustrate how the problem could be solved using quantum algorithms.
arXiv Detail & Related papers (2024-02-12T20:44:46Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum-Enhanced Greedy Combinatorial Optimization Solver [12.454028945013924]
We introduce an iterative quantum optimization algorithm to solve optimization problems.
We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits.
We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement.
arXiv Detail & Related papers (2023-03-09T18:59:37Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
This tutorial provides a mathematical description of the class of Variational Quantum Algorithms.
We introduce precisely the key aspects of these hybrid algorithms on the quantum side and the classical side.
We devote a particular attention to QAOA, detailing the quantum circuits involved in that algorithm, as well as the properties satisfied by its possible guiding functions.
arXiv Detail & Related papers (2022-12-22T14:27:52Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - Quantum Semi-Supervised Learning with Quantum Supremacy [0.0]
Quantum machine learning promises to efficiently solve important problems.
There are two persistent challenges in classical machine learning: the lack of labeled data, and the limit of computational power.
We propose a novel framework that resolves both issues: quantum semi-supervised learning.
arXiv Detail & Related papers (2021-10-05T20:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.