Fermionic one-body entanglement as a thermodynamic resource
- URL: http://arxiv.org/abs/2212.10954v3
- Date: Thu, 23 Mar 2023 10:33:28 GMT
- Title: Fermionic one-body entanglement as a thermodynamic resource
- Authors: Krzysztof Ptaszynski, Massimiliano Esposito
- Abstract summary: We show that entanglement of a two-mode fermionic state can be used as a genuine quantum resource in open-system thermodynamic processes.
We thus demonstrate that quantum thermodynamics can shed light on the nature of fermionic entanglement and the operational meaning of the different notions used to define it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is ongoing controversy about whether a coherent superposition of the
occupied states of two fermionic modes should be regarded entangled or not,
that is, whether its intrinsic quantum correlations are operationally
accessible and useful as a resource. This has been questioned on the basis that
such an entanglement cannot be accessed by local operations on individual modes
due to the parity superselection rule which constrains the set of physical
observables. In other words, one cannot observe violations of Bell's
inequality. Here we show, however, that entanglement of a two-mode fermionic
state can be used as a genuine quantum resource in open-system thermodynamic
processes, enabling one to perform tasks forbidden for separable states. We
thus demonstrate that quantum thermodynamics can shed light on the nature of
fermionic entanglement and the operational meaning of the different notions
used to define it.
Related papers
- Second Law of Entanglement Manipulation with Entanglement Battery [41.94295877935867]
A central question since the beginning of quantum information science is how two distant parties can convert one entangled state into another.
It has been conjectured that entangled state transformations could be executed reversibly in an regime, mirroring the nature of Carnot cycles in classical thermodynamics.
We investigate the concept of an entanglement battery, an auxiliary quantum system that facilitates quantum state transformations without a net loss of entanglement.
arXiv Detail & Related papers (2024-05-17T07:55:04Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Capacity of Entanglement for Non-local Hamiltonian [0.0]
capacity of entanglement is the quantum information theoretic counterpart of the heat capacity.
We show that the quantum speed limit for creating the entanglement is not only governed by the fluctuation in the non-local Hamiltonian, but also depends on the time average of square root of the capacity of entanglement.
arXiv Detail & Related papers (2022-07-23T08:30:43Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Contributions from populations and coherences in non-equilibrium entropy
production [0.0]
entropy produced when a quantum system is driven away from equilibrium can be decomposed in two parts, one related with populations and the other with quantum coherences.
We argue that, despite satisfying fluctuation theorems and having a clear resource-theoretic interpretation, this splitting has shortcomings.
Motivated by this, we provide here a complementary approach, where the entropy production is split in a way such that the contributions from populations and coherences are written in terms of a thermal state of a specially dephased Hamiltonian.
arXiv Detail & Related papers (2021-02-22T18:30:05Z) - Quantum Operations in an Information Theory for Fermions [0.0]
We introduce the physically allowed quantum operations, in congruence with the parity super-selection rule, that map the set of allowed fermionic states onto itself.
We explicitly show the equivalence between these three representations of fermionic quantum operations.
arXiv Detail & Related papers (2021-02-17T23:41:05Z) - The tight Second Law inequality for coherent quantum systems and
finite-size heat baths [0.0]
We propose a new form of the Second Law inequality that defines a tight bound for extractable work from the non-equilibrium quantum state.
In particular, we derive a formula for the locked energy in coherences, i.e. a quantum contribution that cannot be extracted as a work, and we find out its thermodynamic limit.
arXiv Detail & Related papers (2020-08-12T12:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.