SPIRiT-Diffusion: SPIRiT-driven Score-Based Generative Modeling for
Vessel Wall imaging
- URL: http://arxiv.org/abs/2212.11274v1
- Date: Wed, 14 Dec 2022 02:08:02 GMT
- Title: SPIRiT-Diffusion: SPIRiT-driven Score-Based Generative Modeling for
Vessel Wall imaging
- Authors: Chentao Cao, Zhuo-Xu Cui, Jing Cheng, Sen Jia, Hairong Zheng, Dong
Liang, Yanjie Zhu
- Abstract summary: We give a new diffusion model, called SPIRiT-Diffusion, based on the SPIRiT iterative reconstruction algorithm.
Specifically, SPIRiT-Diffusion characterizes the prior distribution of coil-by-coil images by score matching.
We achieve superior reconstruction results on the joint Intracranial and Carotid Vessel Wall imaging dataset.
- Score: 17.56962674277573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion model is the most advanced method in image generation and has been
successfully applied to MRI reconstruction. However, the existing methods do
not consider the characteristics of multi-coil acquisition of MRI data.
Therefore, we give a new diffusion model, called SPIRiT-Diffusion, based on the
SPIRiT iterative reconstruction algorithm. Specifically, SPIRiT-Diffusion
characterizes the prior distribution of coil-by-coil images by score matching
and characterizes the k-space redundant prior between coils based on
self-consistency. With sufficient prior constraint utilized, we achieve
superior reconstruction results on the joint Intracranial and Carotid Vessel
Wall imaging dataset.
Related papers
- Self-Consistent Nested Diffusion Bridge for Accelerated MRI Reconstruction [22.589087990596887]
We focus on the underexplored task of magnitude-image-based MRI reconstruction.
Recent advancements in diffusion models, particularly denoising diffusion probabilistic models, have demonstrated strong capabilities in modeling image priors.
We propose a novel Self-Consistent Nested Diffusion Bridge (SC-NDB) framework that models accelerated MRI reconstruction.
arXiv Detail & Related papers (2024-12-13T09:35:34Z) - LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
A Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method is proposed.
A sketcher module is utilized to provide appropriate control and balance the quality and fidelity of the reconstructed MR images.
A VAE adapted for MRI tasks (MR-VAE) is explored, which can serve as the backbone for future MR-related tasks.
arXiv Detail & Related papers (2024-11-05T09:51:59Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction [10.158713017984345]
We propose a few-shot low-dose CT reconstruction method using Partitioned Hankel-based Diffusion (PHD) models.
In the iterative reconstruction stage, an iterative differential equation solver is employed along with data consistency constraints to update the acquired projection data.
The results approximate those of normaldose counterparts, validating PHD model as an effective and practical model for reducing artifacts and noise while preserving image quality.
arXiv Detail & Related papers (2024-05-27T13:44:53Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
We propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon)
SSDiffRecon expresses a conditional diffusion process that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing.
Experiments on public brain MR datasets demonstrate the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality.
arXiv Detail & Related papers (2023-06-29T03:31:46Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI [14.545736786515837]
We introduce SPIRiT-Diffusion, a diffusion model for k-space inspired by the iterative self-consistent SPIRiT method.
We evaluate the proposed SPIRiT-Diffusion method using a 3D joint intracranial and carotid vessel wall imaging dataset.
arXiv Detail & Related papers (2023-04-11T08:43:52Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.