Random Sampling Neural Network for Quantum Many-Body Problems
- URL: http://arxiv.org/abs/2011.05199v1
- Date: Tue, 10 Nov 2020 15:52:44 GMT
- Title: Random Sampling Neural Network for Quantum Many-Body Problems
- Authors: Chen-Yu Liu, Daw-Wei Wang
- Abstract summary: We propose a general numerical method, Random Sampling Neural Networks (RSNN), to utilize the pattern recognition technique for the random sampling matrix elements of an interacting many-body system via a self-supervised learning approach.
Several exactly solvable 1D models, including Ising model with transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to test the applicability of RSNN.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The eigenvalue problem of quantum many-body systems is a fundamental and
challenging subject in condensed matter physics, since the dimension of the
Hilbert space (and hence the required computational memory and time) grows
exponentially as the system size increases. A few numerical methods have been
developed for some specific systems, but may not be applicable in others. Here
we propose a general numerical method, Random Sampling Neural Networks (RSNN),
to utilize the pattern recognition technique for the random sampling matrix
elements of an interacting many-body system via a self-supervised learning
approach. Several exactly solvable 1D models, including Ising model with
transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to
test the applicability of RSNN. Pretty high accuracy of energy spectrum,
magnetization and critical exponents etc. can be obtained within the strongly
correlated regime or near the quantum phase transition point, even the
corresponding RSNN models are trained in the weakly interacting regime. The
required computation time scales linearly to the system size. Our results
demonstrate that it is possible to combine the existing numerical methods for
the training process and RSNN to explore quantum many-body problems in a much
wider parameter regime, even for strongly correlated systems.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Neural network approach to quasiparticle dispersions in doped
antiferromagnets [0.0]
We study the ability of neural quantum states to represent the bosonic and fermionic $t-J$ model on different 1D and 2D lattices.
We present a method to calculate dispersion relations from the neural network state representation.
arXiv Detail & Related papers (2023-10-12T17:59:33Z) - Neural Network Solutions of Bosonic Quantum Systems in One Dimension [0.0]
We benchmark the methodology by using neural networks to study several different integrable bosonic quantum systems in one dimension.
While testing the scalability of the procedure to systems with many particles, we also introduce using symmetric function inputs to the neural network to enforce exchange symmetries of indistinguishable particles.
arXiv Detail & Related papers (2023-09-05T16:08:48Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems.
The proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost.
arXiv Detail & Related papers (2020-08-31T02:54:09Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.