Quantum tangent kernel
- URL: http://arxiv.org/abs/2111.02951v1
- Date: Thu, 4 Nov 2021 15:38:52 GMT
- Title: Quantum tangent kernel
- Authors: Norihito Shirai, Kenji Kubo, Kosuke Mitarai, Keisuke Fujii
- Abstract summary: In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit.
We find that parameters of a deep enough quantum circuit do not move much from its initial values during training.
Such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel.
- Score: 0.8921166277011345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum kernel method is one of the key approaches to quantum machine
learning, which has the advantages that it does not require optimization and
has theoretical simplicity. By virtue of these properties, several experimental
demonstrations and discussions of the potential advantages have been developed
so far. However, as is the case in classical machine learning, not all quantum
machine learning models could be regarded as kernel methods. In this work, we
explore a quantum machine learning model with a deep parameterized quantum
circuit and aim to go beyond the conventional quantum kernel method. In this
case, the representation power and performance are expected to be enhanced,
while the training process might be a bottleneck because of the barren plateaus
issue. However, we find that parameters of a deep enough quantum circuit do not
move much from its initial values during training, allowing first-order
expansion with respect to the parameters. This behavior is similar to the
neural tangent kernel in the classical literatures, and such a deep variational
quantum machine learning can be described by another emergent kernel, quantum
tangent kernel. Numerical simulations show that the proposed quantum tangent
kernel outperforms the conventional quantum kernel method for an
ansatz-generated dataset. This work provides a new direction beyond the
conventional quantum kernel method and explores potential power of quantum
machine learning with deep parameterized quantum circuits.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods [30.565491081930997]
We develop an approach for estimating desired precision of kernel values, which is translated into the number of circuit runs.
We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption.
arXiv Detail & Related papers (2024-07-22T16:29:35Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
Kernel methods are a powerful and popular technique in classical Machine Learning.
The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage.
A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels.
arXiv Detail & Related papers (2024-05-02T23:45:29Z) - A Kerr kernel quantum learning machine [0.0]
We propose a quantum hardware kernel implementation scheme based on superconducting quantum circuits.
The scheme does not use qubits or quantum circuits but rather exploits the analogue features of Kerr modes.
arXiv Detail & Related papers (2024-04-02T09:50:33Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Numerical evidence against advantage with quantum fidelity kernels on
classical data [12.621805903645711]
We show that quantum kernels suffer from exponential "flattening" of the spectrum as the number of qubits grows.
We provide extensive numerical evidence for this phenomenon utilizing multiple previously studied quantum feature maps and both synthetic and real data.
Our results show that unless novel techniques are developed to control the inductive bias of quantum kernels, they are unlikely to provide a quantum advantage on classical data.
arXiv Detail & Related papers (2022-11-29T19:23:11Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.