Design interpretable experience of dynamical feed forward machine
learning model for forecasting NASDAQ
- URL: http://arxiv.org/abs/2212.12044v1
- Date: Thu, 22 Dec 2022 21:27:40 GMT
- Title: Design interpretable experience of dynamical feed forward machine
learning model for forecasting NASDAQ
- Authors: Pouriya Khalilian, Sara Azizi, Mohammad Hossein Amiri, and Javad T.
Firouzjaee
- Abstract summary: The volatility of the stock market and the influence of economic indicators such as crude oil, gold, and the dollar in the stock market, and NASDAQ shares are also affected.
We have examined the effect of oil, dollar, gold, and the volatility of the stock market in the economic market.
Using PCA and Linear Regression algorithm, we have designed an optimal dynamic learning experience for modeling these stocks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: National Association of Securities Dealers Automated Quotations(NASDAQ) is an
American stock exchange based. It is one of the most valuable stock economic
indices in the world and is located in New York City \cite{pagano2008quality}.
The volatility of the stock market and the influence of economic indicators
such as crude oil, gold, and the dollar in the stock market, and NASDAQ shares
are also affected and have a volatile and chaotic nature
\cite{firouzjaee2022lstm}.In this article, we have examined the effect of oil,
dollar, gold, and the volatility of the stock market in the economic market,
and then we have also examined the effect of these indicators on NASDAQ stocks.
Then we started to analyze the impact of the feedback on the past prices of
NASDAQ stocks and its impact on the current price. Using PCA and Linear
Regression algorithm, we have designed an optimal dynamic learning experience
for modeling these stocks. The results obtained from the quantitative analysis
are consistent with the results of the qualitative analysis of economic
studies, and the modeling done with the optimal dynamic experience of machine
learning justifies the current price of NASDAQ shares.
Related papers
- Predicting Stock Prices with FinBERT-LSTM: Integrating News Sentiment Analysis [2.7921137693344384]
We use deep learning networks, based on the history of stock prices and articles of financial, business, technical news that introduce market information to predict stock prices.
We developed a pre-trained NLP model known as FinBERT, designed to discern the sentiments within financial texts.
This model utilizes news categories related to the stock market structure hierarchy, namely market, industry, and stock related news categories, combined with the stock market's stock price situation in the previous week for prediction.
arXiv Detail & Related papers (2024-07-23T03:26:07Z) - BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights [0.0]
We employ BERTopic, an advanced NLP technique, to analyze the sentiment of topics derived from stock market comments.
Our methodology integrates this sentiment analysis with various deep learning models, renowned for their effectiveness in time series and stock prediction tasks.
The results indicate that topics in stock market comments provide implicit, valuable insights into stock market volatility and price trends.
arXiv Detail & Related papers (2024-04-02T15:50:10Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
We propose a new model named Long Short-Term Memory (LSTM) with Sequential Self-Attention Mechanism (LSTM-SSAM)
We conduct extensive experiments on the three stock datasets: SBIN,BANK, and BANKBARODA.
The experimental results prove the effectiveness and feasibility of the proposed model compared to existing models.
arXiv Detail & Related papers (2023-08-07T14:21:05Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Research on the correlation between text emotion mining and stock market
based on deep learning [6.000327333763521]
This paper will use the Bert model to train the financial corpus and predict the Shenzhen stock index.
It is found that the emotional characteristics obtained by applying the BERT model to the financial corpus can be reflected in the fluctuation of the stock market.
arXiv Detail & Related papers (2022-05-09T12:51:16Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.