論文の概要: Rule Learning by Modularity
- arxiv url: http://arxiv.org/abs/2212.12335v1
- Date: Fri, 23 Dec 2022 13:41:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 17:01:37.312192
- Title: Rule Learning by Modularity
- Title(参考訳): モジュラリティによるルール学習
- Authors: Albert N\"ossig, Tobias Hell and Georg Moser
- Abstract要約: 本稿では、(確率的な)機械学習における最先端の手法とルール学習における従来の手法を組み合わせたモジュラー方法論を提案する。
本報告では, 歯科用紙幣の分類に関する新しい知見について述べる。
後者のケーススタディは、Allianz Private Krankenversicherungs-Aktiengesellschaftとの工業協力に由来する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a modular methodology that combines
state-of-the-art methods in (stochastic) machine learning with traditional
methods in rule learning to provide efficient and scalable algorithms for the
classification of vast data sets, while remaining explainable. Apart from
evaluating our approach on the common large scale data sets MNIST,
Fashion-MNIST and IMDB, we present novel results on explainable classifications
of dental bills. The latter case study stems from an industrial collaboration
with Allianz Private Krankenversicherungs-Aktiengesellschaft which is an
insurance company offering diverse services in Germany.
- Abstract(参考訳): 本稿では,(確率的な)機械学習における最先端の手法とルール学習における従来の手法を組み合わせて,膨大なデータセットの分類のための効率的かつスケーラブルなアルゴリズムを提供するモジュール方式を提案する。
MNIST, Fashion-MNIST, IMDB の大規模データ集合に対する我々のアプローチの評価は別として, 説明可能な歯科用紙幣分類に関する新たな結果を示す。
後者のケーススタディは、ドイツで多様なサービスを提供する保険会社であるAllianz Private Krankenversicherungs-Aktiengesellschaftとの産業協力に由来する。
関連論文リスト
- Masked Image Modeling: A Survey [73.21154550957898]
マスク付き画像モデリングは、コンピュータビジョンにおける強力な自己教師付き学習技術として登場した。
我々は近年,分類学を構築し,最も顕著な論文をレビューしている。
我々は,最も人気のあるデータセット上で,様々なマスク付き画像モデリング手法の性能評価結果を集約する。
論文 参考訳(メタデータ) (2024-08-13T07:27:02Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
主評価指標の基礎に基づいて計算された領域関連メトリクスの範囲を定義する評価プロトコルを導入・指定する。
このような比較の結果は、様々な最先端のMARL、検索ベース、ハイブリッド手法を含むものである。
論文 参考訳(メタデータ) (2024-07-20T16:37:21Z) - Benchmarking Collaborative Learning Methods Cost-Effectiveness for
Prostate Segmentation [39.19170617818745]
我々は,MRIによる前立腺分節化問題に協調的なシナリオで対処する。
私たちの知る限りでは、コラボレーティブラーニングの問題を解決するためにコンセンサスベースの手法(CBM)が使用されるのはこれが初めてです。
論文 参考訳(メタデータ) (2023-09-29T09:47:18Z) - Predicted Embedding Power Regression for Large-Scale Out-of-Distribution
Detection [77.1596426383046]
本研究では,学習過程において学習したラベル分布に基づいて,予測されたクラスラベルの確率を計算する手法を開発した。
提案手法は,計算コストの最小化のみで,現在の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-03-07T18:28:39Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
ICU関連タスクの幅広い範囲をカバーするベンチマークの提供を目指している。
HiRIDデータセットを用いて,臨床医とのコラボレーションによって開発された複数の臨床関連タスクを定義した。
我々は,このタイプのデータに対する深層学習アプローチのいくつかの制限を強調し,現在最先端のシーケンスモデリング手法を詳細に分析する。
論文 参考訳(メタデータ) (2021-11-16T15:06:42Z) - Learning Multimodal VAEs through Mutual Supervision [72.77685889312889]
MEMEは、相互監督を通じて暗黙的にモダリティ間の情報を結合する。
我々は、MEMEが、部分的および完全観察スキームの双方で標準メトリクスのベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2021-06-23T17:54:35Z) - Few-shot segmentation of medical images based on meta-learning with
implicit gradients [0.48861336570452174]
医用画像セグメンテーションのための数ショット設定において,最適化に基づく暗黙的メタ学習iMAMLアルゴリズムを活用することを提案する。
このアプローチでは、さまざまなトレーニングサンプルから学んだ重みを活用でき、新しい未知のデータセットにデプロイすることができます。
論文 参考訳(メタデータ) (2021-06-06T19:52:06Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Bayesian Generative Models for Knowledge Transfer in MRI Semantic
Segmentation Problems [15.24006130659201]
本稿では,遺伝ベイズ先行ネットワークを用いた疾患間の知識伝達手法を提案する。
提案手法はトレーニング前のアプローチとランダム初期化と比較し,脳腫瘍-2018データベースの小さな部分集合に対するDice similarity Coefficientの測定値から最良の結果を得る。
論文 参考訳(メタデータ) (2020-05-26T11:42:17Z) - Reasoning About Generalization via Conditional Mutual Information [26.011933885798506]
我々は、Mutual Information (CMI) を用いて、入力がどの程度の精度で認識できるかを定量化する。
CMIのバウンダリは,VC次元,圧縮スキーム,差分プライバシー,その他の手法から得られることを示す。
次に、有界な CMI は様々な種類の一般化を意味することを示す。
論文 参考訳(メタデータ) (2020-01-24T18:13:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。