Proximal Policy Optimization with Graph Neural Networks for Optimal
Power Flow
- URL: http://arxiv.org/abs/2212.12470v1
- Date: Fri, 23 Dec 2022 17:00:00 GMT
- Title: Proximal Policy Optimization with Graph Neural Networks for Optimal
Power Flow
- Authors: \'Angela L\'opez-Cardona and Guillermo Bern\'ardez and Pere Barlet-Ros
and Albert Cabellos-Aparicio
- Abstract summary: Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on data.
Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems.
We propose an architecture that learns how to solve the problem and that is at the same time able to unseen scenarios.
- Score: 5.453745629140304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimal Power Flow (OPF) is a very traditional research area within the power
systems field that seeks for the optimal operation point of electric power
plants, and which needs to be solved every few minutes in real-world scenarios.
However, due to the nonconvexities that arise in power generation systems,
there is not yet a fast, robust solution technique for the full Alternating
Current Optimal Power Flow (ACOPF). In the last decades, power grids have
evolved into a typical dynamic, non-linear and large-scale control system,
known as the power system, so searching for better and faster ACOPF solutions
is becoming crucial. Appearance of Graph Neural Networks (GNN) has allowed the
natural use of Machine Learning (ML) algorithms on graph data, such as power
networks. On the other hand, Deep Reinforcement Learning (DRL) is known for its
powerful capability to solve complex decision-making problems. Although
solutions that use these two methods separately are beginning to appear in the
literature, none has yet combined the advantages of both. We propose a novel
architecture based on the Proximal Policy Optimization algorithm with Graph
Neural Networks to solve the Optimal Power Flow. The objective is to design an
architecture that learns how to solve the optimization problem and that is at
the same time able to generalize to unseen scenarios. We compare our solution
with the DCOPF in terms of cost after having trained our DRL agent on IEEE 30
bus system and then computing the OPF on that base network with topology
changes
Related papers
- Physics-Informed GNN for non-linear constrained optimization: PINCO a solver for the AC-optimal power flow [0.0]
This work explores a physics-informed graph neural network, PINCO, to solve the AC-OPF.
PINCO generalizes effectively across a diverse set of loading conditions in the power system.
It can function both as a solver and as a hybrid universal function approximator.
arXiv Detail & Related papers (2024-10-07T08:08:36Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC optimal power flow is a fundamental optimization problem in power system analysis.
Deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline.
This paper proposes an end-to-end unsupervised learning based framework for AC-OPF.
arXiv Detail & Related papers (2022-12-07T22:26:45Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
Machine learning assisted optimal power flow (OPF) aims to reduce the computational complexity of non-linear and non- constrained power flow problems.
We assess the performance of a variety of FCNN, CNN and GNN models for two fundamental approaches to machine assisted OPF.
For several synthetic grids with interconnected utilities, we show that locality properties between feature and target variables are scarce.
arXiv Detail & Related papers (2021-10-01T10:39:53Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Learning to Solve AC Optimal Power Flow by Differentiating through
Holomorphic Embeddings [17.338923885534193]
Alternating current optimal power flow (AC-OPF) is one of the fundamental problems in power systems operation.
In this paper, we show efficient strategies that circumvent this problem by differentiating through the operations of a power flow solver.
We report a 12x increase in speed and a 40% increase in robustness compared to a traditional solver.
arXiv Detail & Related papers (2020-12-16T18:23:51Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPF is a key building block in many power system applications.
Motivated by increased penetration of renewable sources, this paper explores deep learning to deliver efficient approximations to the AC-OPF.
arXiv Detail & Related papers (2020-06-29T20:22:16Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.