Towards Long-term Autonomy: A Perspective from Robot Learning
- URL: http://arxiv.org/abs/2212.12798v1
- Date: Sat, 24 Dec 2022 18:32:14 GMT
- Title: Towards Long-term Autonomy: A Perspective from Robot Learning
- Authors: Zhi Yan, Li Sun, Tomas Krajnik, Tom Duckett, Nicola Bellotto
- Abstract summary: Service robots are expected to be able to operate autonomously for long periods of time without human intervention.
In this paper, we examine the problem of long-term autonomy from the perspective of robot learning, especially in an online way.
- Score: 13.38855419752331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the future, service robots are expected to be able to operate autonomously
for long periods of time without human intervention. Many work striving for
this goal have been emerging with the development of robotics, both hardware
and software. Today we believe that an important underpinning of long-term
robot autonomy is the ability of robots to learn on site and on-the-fly,
especially when they are deployed in changing environments or need to traverse
different environments. In this paper, we examine the problem of long-term
autonomy from the perspective of robot learning, especially in an online way,
and discuss in tandem its premise "data" and the subsequent "deployment".
Related papers
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Correspondence learning between morphologically different robots via
task demonstrations [2.1374208474242815]
We propose a method to learn correspondences among two or more robots that may have different morphologies.
A fixed-based manipulator robot with joint control and a differential drive mobile robot can be addressed within the proposed framework.
We provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
arXiv Detail & Related papers (2023-10-20T12:42:06Z) - Exploring AI-enhanced Shared Control for an Assistive Robotic Arm [4.999814847776098]
In particular, we explore how Artifical Intelligence (AI) can be integrated into a shared control paradigm.
In particular, we focus on the consequential requirements for the interface between human and robot.
arXiv Detail & Related papers (2023-06-23T14:19:56Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
capability modeling is considered a promising approach to semantically model functions provided by different machines.
This contribution investigates how to apply and extend capability models from manufacturing to the field of autonomous robots.
arXiv Detail & Related papers (2022-09-22T10:13:55Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Back to Reality for Imitation Learning [8.57914821832517]
Imitation learning, and robot learning in general, emerged due to breakthroughs in machine learning, rather than breakthroughs in robotics.
We believe that a better metric for real-world robot learning is time efficiency, which better models the true cost to humans.
arXiv Detail & Related papers (2021-11-25T02:03:52Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Design and Development of Autonomous Delivery Robot [0.16863755729554888]
We present an autonomous mobile robot platform that delivers the package within the VNIT campus without any human intercommunication.
The entire pipeline of an autonomous robot working in outdoor environments is explained in this thesis.
arXiv Detail & Related papers (2021-03-16T17:57:44Z) - A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives [44.45953630612019]
Recent success of machine learning in many domains has been overwhelming.
We will give a broad overview of behaviors that have been learned and used on real robots.
arXiv Detail & Related papers (2019-06-05T07:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.