Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model
- URL: http://arxiv.org/abs/2407.11295v1
- Date: Tue, 16 Jul 2024 00:51:01 GMT
- Title: Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model
- Authors: Mari Carmen BaƱuls, Krzysztof Cichy, Hao-Ti Hung, Ying-Jer Kao, C. -J. David Lin, Amit Singh,
- Abstract summary: We simulate the evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases.
We identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present.
- Score: 2.1677452722087884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using tensor network methods, we simulate the real-time evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases, and study the appearance of dynamical quantum phase transitions, as non-analyticities in the Loschmidt rate. Whereas the presence of a dynamical quantum phase transition in the model does not correspond to quenches across the critical line of the equilibrium phase diagram at zero temperature, we identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present. Moreover, in the case of the gapped quench Hamiltonian, we unveil a connection of this threshold to a transition between different regions in the finite temperature phase diagram.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Dynamics Reflects Quantum Phase Transition of Rabi Model [0.0]
A breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength.
We show that the dynamics of physical quantities can reflect such a phase transition for this model.
This work offers an idea to explore phase transitions by non-equilibrium process for open quantum systems.
arXiv Detail & Related papers (2023-09-13T14:45:07Z) - Localised Dynamics in the Floquet Quantum East Model [0.0]
We study the discrete-time version of the Quantum East model, an interacting quantum spin chain inspired by simple kinetically constrained models of classical glasses.
Previous work has established that its continuous-time counterpart displays a disorder-free localisation transition signalled by the appearance of an exponentially large family of non-thermal, localised eigenstates.
Our findings imply that the transition is currently observable in state-of-the-art platforms for digital quantum simulation.
arXiv Detail & Related papers (2023-06-21T17:42:50Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Predicting Topological Quantum Phase Transition via Multipartite
Entanglement from Dynamics [0.0]
An exactly solvable Kitaev model in a two-dimensional square lattice exhibits a topological quantum phase transition.
We show that features of the dynamical state, such as Loschmidt echo, time-averaged multipartite entanglement, can determine whether the initial state belongs to the topological phase or not.
arXiv Detail & Related papers (2022-12-26T18:42:05Z) - Dynamical quantum phase transitions in SYK Lindbladians [3.790109645356671]
We study the open quantum dynamics of the Sachdev-Ye-Kitaev (SYK) model.
We find that the dissipative form factor exhibits dynamical quantum phase transitions.
arXiv Detail & Related papers (2022-10-08T19:29:55Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.