Modeling Time-Series and Spatial Data for Recommendations and Other
Applications
- URL: http://arxiv.org/abs/2212.13259v1
- Date: Sun, 25 Dec 2022 09:34:15 GMT
- Title: Modeling Time-Series and Spatial Data for Recommendations and Other
Applications
- Authors: Vinayak Gupta
- Abstract summary: We address the problems that may arise due to the poor quality of CTES data being fed into a recommender system.
To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences.
We extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction.
- Score: 1.713291434132985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the research directions described in this thesis, we seek to address the
critical challenges in designing recommender systems that can understand the
dynamics of continuous-time event sequences. We follow a ground-up approach,
i.e., first, we address the problems that may arise due to the poor quality of
CTES data being fed into a recommender system. Later, we handle the task of
designing accurate recommender systems. To improve the quality of the CTES
data, we address a fundamental problem of overcoming missing events in temporal
sequences. Moreover, to provide accurate sequence modeling frameworks, we
design solutions for points-of-interest recommendation, i.e., models that can
handle spatial mobility data of users to various POI check-ins and recommend
candidate locations for the next check-in. Lastly, we highlight that the
capabilities of the proposed models can have applications beyond recommender
systems, and we extend their abilities to design solutions for large-scale CTES
retrieval and human activity prediction. A significant part of this thesis uses
the idea of modeling the underlying distribution of CTES via neural marked
temporal point processes (MTPP). Traditional MTPP models are stochastic
processes that utilize a fixed formulation to capture the generative mechanism
of a sequence of discrete events localized in continuous time. In contrast,
neural MTPP combine the underlying ideas from the point process literature with
modern deep learning architectures. The ability of deep-learning models as
accurate function approximators has led to a significant gain in the predictive
prowess of neural MTPP models. In this thesis, we utilize and present several
neural network-based enhancements for the current MTPP frameworks for the
aforementioned real-world applications.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining [5.2863523790908955]
This paper introduces a novel proposed representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis.
The proposed framework has significant potential for applications across various fields, including services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring, trend analysis, and internet businesses for tracking user behavior and forecasting.
arXiv Detail & Related papers (2024-09-22T06:27:07Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Data-driven Preference Learning Methods for Sorting Problems with
Multiple Temporal Criteria [17.673512636899076]
This study presents novel preference learning approaches to multiple criteria sorting problems in the presence of temporal criteria.
To enhance scalability and accommodate learnable time discount factors, we introduce a novel monotonic Recurrent Neural Network (mRNN)
The proposed mRNN can describe the preference dynamics by depicting marginal value functions and personalized time discount factors along with time.
arXiv Detail & Related papers (2023-09-22T05:08:52Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
This paper introduces ZhiJian, a comprehensive and user-friendly toolbox for model reuse, utilizing the PyTorch backend.
ZhiJian presents a novel paradigm that unifies diverse perspectives on model reuse, encompassing target architecture construction with PTM, tuning target model with PTM, and PTM-based inference.
arXiv Detail & Related papers (2023-08-17T19:12:13Z) - On the Predictive Accuracy of Neural Temporal Point Process Models for
Continuous-time Event Data [3.13468877208035]
Temporal Point Processes (TPPs) serve as the standard mathematical framework for modeling asynchronous event sequences in continuous time.
Researchers have proposed Neural TPPs, which leverage neural network parametrizations to offer more flexible and efficient modeling.
This study systematically evaluates the predictive accuracy of state-of-the-art neural TPP models.
arXiv Detail & Related papers (2023-06-29T16:14:43Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
arXiv Detail & Related papers (2021-06-03T23:41:11Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.