論文の概要: UAV Based 5G Network: A Practical Survey Study
- arxiv url: http://arxiv.org/abs/2212.13329v1
- Date: Tue, 27 Dec 2022 00:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 13:19:46.427307
- Title: UAV Based 5G Network: A Practical Survey Study
- Title(参考訳): UAVベースの5Gネットワーク:実践的研究
- Authors: Mohammed Abuzamak, Hisham Kholidy
- Abstract要約: 無人航空機(UAV)は、新しい無線ネットワークの開発に大きく貢献することが期待されている。
UAVは5Gネットワークの低レイテンシと高速能力を利用して大量のデータをリアルタイムに転送することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute
to the development of new wireless networks that could handle high-speed
transmissions and enable wireless broadcasts. When compared to communications
that rely on permanent infrastructure, UAVs offer a number of advantages,
including flexible deployment, dependable line-of-sight (LoS) connection links,
and more design degrees of freedom because of controlled mobility. Unmanned
aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT)
components have the potential to completely transform a variety of industries.
UAVs may transfer massive volumes of data in real-time by utilizing the low
latency and high-speed abilities of 5G networks, opening up a variety of
applications like remote sensing, precision farming, and disaster response.
This study of UAV communication with regard to 5G/B5G WLANs is presented in
this research. The three UAV-assisted MEC network scenarios also include the
specifics for the allocation of resources and optimization. We also concentrate
on the case where a UAV does task computation in addition to serving as a MEC
server to examine wind farm turbines. This paper covers the key implementation
difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models,
and coupled trajectory-computation performance optimization, in order to
promote widespread implementations of UAV-assisted MEC in practice. The primary
problem for 5G and beyond 5G (B5G) is delivering broadband access to various
device kinds. Prior to discussing associated research issues faced by the
developing integrated network design, we first provide a brief overview of the
background information as well as the networks that integrate space, aviation,
and land.
- Abstract(参考訳): 無人航空機(UAV)は、高速送信と無線放送を可能にする新しい無線ネットワークの開発に大きく貢献すると予想されている。
永続的なインフラに依存する通信と比較すると、uavは柔軟な配置、信頼可能な視線(los)接続リンク、制御された移動性のため設計の自由度など多くの利点を提供している。
無人航空機(UAV)と5GネットワークとIoT(Internet of Things)コンポーネントを組み合わせることで、さまざまな産業を完全に変革する可能性がある。
UAVは5Gネットワークの低レイテンシと高速能力を利用して大量のデータをリアルタイムに転送し、リモートセンシング、精密農業、災害対応といった様々な応用を開放する。
本稿では,5G/B5G WLANに関するUAV通信について述べる。
3つのUAV支援MECネットワークシナリオには、リソースの割り当てと最適化の仕様も含まれている。
また,UAVが作業計算を行う場合や,風力タービンの試験を行うためのMECサーバとして機能する場合にも注目する。
本稿では,UAV 支援 MEC の重要な実装難しさについて述べる。UAV 支援 MEC の実用化を促進するため,最適 UAV 展開,風洞モデル,複合軌道計算性能の最適化などである。
5G以降の5G(B5G)の主な問題は、さまざまなデバイスにブロードバンドアクセスを提供することである。
統合型ネットワーク設計が直面する関連する研究課題について議論する前に、まず背景情報と、宇宙、航空、陸地を統合するネットワークの概要を概説する。
関連論文リスト
- Deep Reinforcement Learning Based Placement for Integrated Access
Backhauling in UAV-Assisted Wireless Networks [6.895620511689995]
本稿では, リアルタイムにUAV配置を最適化するために, 深部強化学習(DRL)を活用する新しい手法を提案する。
この取り組みの独特な貢献は、地上ユーザーとの堅牢な接続を保証するだけでなく、中央ネットワークインフラストラクチャとのシームレスな統合を維持するために、無人でUAVを配置できることにある。
論文 参考訳(メタデータ) (2023-12-21T19:02:27Z) - Deep Reinforcement Learning for Combined Coverage and Resource
Allocation in UAV-aided RAN-slicing [1.7214664783818676]
この研究は、UAV-BS(UAV-BS)がネットワークスライシング機能を備えたUAV支援5Gネットワークを提示する。
ネットワークスライシング環境におけるUAV-BSに対するマルチエージェントおよびマルチエージェント深部強化学習の第一応用について紹介する。
提示された戦略のパフォーマンスはテストされ、ベンチマークと比較され、さまざまなシナリオにおいて満足度の高いユーザの割合(少なくとも27%以上)が強調されている。
論文 参考訳(メタデータ) (2022-11-15T06:50:00Z) - 5G Network on Wings: A Deep Reinforcement Learning Approach to the
UAV-based Integrated Access and Backhaul [11.197456628712846]
無人航空機(UAV)ベースの航空ネットワークは、高速で柔軟で信頼性の高い無線通信のための有望な代替手段を提供する。
本稿では,静的環境と動的環境の両方において,複数のUAV-BSを制御する方法について検討する。
複数のUAV-BSの3次元配置を協調的に最適化するために,深部強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-02-04T07:45:06Z) - Multi-Agent Deep Reinforcement Learning For Optimising Energy Efficiency
of Fixed-Wing UAV Cellular Access Points [3.502112118170715]
固定翼UAVセルアクセスポイントのエネルギー効率を最適化する多エージェント深部強化学習手法を提案する。
提案手法では,UAVの3次元軌道を一連の時間経過で調整できるDueling Deep Q-Network (DDQN) エージェントを備える。
論文 参考訳(メタデータ) (2021-11-03T14:49:17Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
無人航空機(UAV)通信をサポートするIoTデバイスのための同時無線電力伝送と情報伝送方式を提案する。
第1フェーズでは、IoTデバイスが無線電力転送を通じてUAVからエネルギーを回収し、第2フェーズでは、UAVが情報伝送を通じてIoTデバイスからデータを収集する。
マルコフ決定過程を定式化し、ネットワーク総和率を最大化する最適化問題を解くために、2つの深い強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-05T23:55:44Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。