論文の概要: Thermal Heating in ReRAM Crossbar Arrays: Challenges and Solutions
- arxiv url: http://arxiv.org/abs/2212.13707v1
- Date: Wed, 28 Dec 2022 05:47:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 16:24:04.301571
- Title: Thermal Heating in ReRAM Crossbar Arrays: Challenges and Solutions
- Title(参考訳): reramクロスバーアレイの熱加熱:挑戦と解決法
- Authors: Kamilya Smagulova, Mohammed E. Fouda and Ahmed Eltawil
- Abstract要約: 本稿では,CIFAR-10データセットの画像分類問題に対するSpinalNetベースのニューラルネットワークやコンパクト畳み込み変換器(CCT)などの新しいモデルの堅牢性を検討した。
特定の個人モデルに対する攻撃の有効性が高いにもかかわらず、これは他のモデルへの転送可能性を保証するものではないことが示されている。
- 参考スコア(独自算出の注目度): 0.5672132510411465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing popularity of deep-learning-powered applications raises the issue
of vulnerability of neural networks to adversarial attacks. In other words,
hardly perceptible changes in input data lead to the output error in neural
network hindering their utilization in applications that involve decisions with
security risks. A number of previous works have already thoroughly evaluated
the most commonly used configuration - Convolutional Neural Networks (CNNs)
against different types of adversarial attacks. Moreover, recent works
demonstrated transferability of the some adversarial examples across different
neural network models. This paper studied robustness of the new emerging models
such as SpinalNet-based neural networks and Compact Convolutional Transformers
(CCT) on image classification problem of CIFAR-10 dataset. Each architecture
was tested against four White-box attacks and three Black-box attacks. Unlike
VGG and SpinalNet models, attention-based CCT configuration demonstrated large
span between strong robustness and vulnerability to adversarial examples.
Eventually, the study of transferability between VGG, VGG-inspired SpinalNet
and pretrained CCT 7/3x1 models was conducted. It was shown that despite high
effectiveness of the attack on the certain individual model, this does not
guarantee the transferability to other models.
- Abstract(参考訳): ディープラーニングベースのアプリケーションの人気が高まると、ニューラルネットワークの敵攻撃に対する脆弱性が生じる。
言い換えれば、入力データのほとんど認識できない変化は、ニューラルネットワークの出力エラーにつながり、セキュリティリスクを伴う決定に関わるアプリケーションでの利用を妨げる。
これまで多くの研究が、さまざまなタイプの敵攻撃に対して最も一般的に使用される構成である畳み込みニューラルネットワーク(cnns)を十分に評価してきた。
さらに、最近の研究は、異なるニューラルネットワークモデルにわたるいくつかの逆例の転送可能性を示している。
本稿では、CIFAR-10データセットの画像分類問題に対するSpinalNetベースのニューラルネットワークやコンパクト畳み込み変換器(CCT)などの新しいモデルの堅牢性を検討した。
各アーキテクチャは4つのホワイトボックス攻撃と3つのブラックボックス攻撃に対してテストされた。
vggモデルやspinnernetモデルとは異なり、注意に基づくcct構成は、強固なロバスト性と敵の例に対する脆弱性の間の大きな範囲を示した。
最終的に,vgg,vggスパイナルネットおよびcct 7/3x1モデル間の移動性について検討した。
その結果,特定のモデルに対する攻撃の有効性は高いものの,他のモデルへの移動性は保証されないことがわかった。
関連論文リスト
- Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
適応型ニューラルネットワークの動的対向攻撃問題について検討する。
本稿では,LGM(Leaded Gradient Method)を提案する。
我々のLGMは、動的無意識攻撃法と比較して、優れた敵攻撃性能を達成している。
論文 参考訳(メタデータ) (2022-10-15T01:32:08Z) - Learning Robust Kernel Ensembles with Kernel Average Pooling [3.6540368812166872]
本稿では,階層活性化テンソルのカーネル次元に沿って平均フィルタを適用するニューラルネットワーク構築ブロックであるKernel Average Pooling(KAP)を紹介する。
類似機能を持つカーネルのアンサンブルは、KAPを装備した畳み込みニューラルネットワークにおいて自然に出現し、バックプロパゲーションで訓練されることを示す。
論文 参考訳(メタデータ) (2022-09-30T19:49:14Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Improving Neural Network Robustness through Neighborhood Preserving
Layers [0.751016548830037]
このような層を組み込むことができ、効率的にトレーニングできる新しいニューラルネットワークアーキテクチャを実証する。
我々は、設計したネットワークアーキテクチャが、最先端の勾配に基づく攻撃に対してより堅牢であることを実証的に示す。
論文 参考訳(メタデータ) (2021-01-28T01:26:35Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。