論文の概要: Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection
- arxiv url: http://arxiv.org/abs/2410.02647v1
- Date: Thu, 3 Oct 2024 16:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 01:52:35.809397
- Title: Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection
- Title(参考訳): ワクチンの選択を可能にするデュアルアテンションによる免疫原性予測
- Authors: Song Li, Yang Tan, Song Ke, Liang Hong, Bingxin Zhou,
- Abstract要約: ProVaccineは、タンパク質配列と構造を潜在ベクトル表現に統合する、新しいディープラーニングソリューションである。
現在までに最も包括的な免疫原性データセットをコンパイルし、細菌、ウイルス、腫瘍から9,500以上の抗原配列、構造、および免疫原性ラベルを含む。
私たちの研究はワクチン設計に有効なツールを提供し、将来の研究に有用なベンチマークを設定します。
- 参考スコア(独自算出の注目度): 6.949493332885247
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Immunogenicity prediction is a central topic in reverse vaccinology for finding candidate vaccines that can trigger protective immune responses. Existing approaches typically rely on highly compressed features and simple model architectures, leading to limited prediction accuracy and poor generalizability. To address these challenges, we introduce ProVaccine, a novel deep learning solution with a dual attention mechanism that integrates pre-trained latent vector representations of protein sequences and structures. We also compile the most comprehensive immunogenicity dataset to date, encompassing over 9,500 antigen sequences, structures, and immunogenicity labels from bacteria, viruses, and tumors. Extensive experiments demonstrate that ProVaccine outperforms existing methods across a wide range of evaluation metrics. Furthermore, we establish a post-hoc validation protocol to assess the practical significance of deep learning models in tackling vaccine design challenges. Our work provides an effective tool for vaccine design and sets valuable benchmarks for future research.
- Abstract(参考訳): 免疫原性予測は、防御免疫反応を誘発する候補ワクチンを見つけるための逆ワクチン学における中心的なトピックである。
既存のアプローチは一般的に高度に圧縮された特徴と単純なモデルアーキテクチャに依存しており、予測精度が制限され、一般化性が低い。
これらの課題に対処するために,タンパク質配列と構造を事前学習した潜在ベクトル表現を統合する,二重注意機構を備えた新しいディープラーニングソリューションであるProVaccineを紹介する。
現在までに最も包括的な免疫原性データセットをコンパイルし、細菌、ウイルス、腫瘍から9,500以上の抗原配列、構造、および免疫原性ラベルを含む。
大規模な実験では、ProVaccineはさまざまな評価指標で既存のメソッドよりも優れています。
さらに,ワクチン設計課題に取り組む上での深層学習モデルの実用的意義を評価するためのポストホック検証プロトコルを構築した。
私たちの研究はワクチン設計に有効なツールを提供し、将来の研究に有用なベンチマークを設定します。
関連論文リスト
- Opponent Shaping for Antibody Development [49.26728828005039]
抗ウイルス療法は通常、ウイルスの現在の株のみを標的とするように設計されている。
治療によって誘導される選択的圧力はウイルスに作用し、変異株の出現を誘導し、初期治療が効果を低下させる。
我々は、ウイルスの進化的脱出の遺伝的シミュレーションを実装するために、抗体とウイルス抗原の結合の計算モデルを構築した。
論文 参考訳(メタデータ) (2024-09-16T14:56:27Z) - Graph Adversarial Immunization for Certifiable Robustness [63.58739705845775]
グラフニューラルネットワーク(GNN)は敵の攻撃に対して脆弱である。
既存の防衛は、敵の訓練やモデル修正の開発に重点を置いている。
本稿では,グラフ構造の一部を接種するグラフ対人免疫法を提案し,定式化する。
論文 参考訳(メタデータ) (2023-02-16T03:18:43Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Improved proteasomal cleavage prediction with positive-unlabeled
learning [0.9023847175654603]
本稿では,拡張データセットと正の未ラベル学習のソリッド理論スペクトロメトリを用いて学習した新しい予測器を提案する。
改良された予測能力により、より正確なワクチン開発が可能になる。
論文 参考訳(メタデータ) (2022-09-14T11:29:15Z) - Constrained Submodular Optimization for Vaccine Design [1.7622426179653559]
遺伝的変異により、接種された集団に広範な免疫を与えるペプチドワクチンを設計することが困難になる。
本稿では,確率論的機械学習モデルを用いたペプチドワクチンの評価と設計のためのフレームワークを提案する。
従来より優れたSARS-CoV-2ワクチンの設計を行う能力を示した。
論文 参考訳(メタデータ) (2022-06-16T17:40:54Z) - A feasibility study proposal of the predictive model to enable the
prediction of population susceptibility to COVID-19 by analysis of vaccine
utilization for advising deployment of a booster dose [0.0]
SARS-CoV-2 B1.1.529株またはOmicron株が世界中に分布する。
間もなく終わらないことや、より伝染的で有害な変種が現れるまで、時間との戦いになることを懸念する。
ウイルスの増殖を防ぐ最も有望なアプローチの1つは、持続的な高予防接種効果を維持することである。
論文 参考訳(メタデータ) (2022-04-25T16:05:59Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Modeling the effect of the vaccination campaign on the Covid-19 pandemic [0.0]
予防接種キャンペーン中にコビッドウイルスの流行を予測できる数学的モデルであるSAIVRを紹介した。
このモデルは、半教師付き機械学習手法を用いて推定されるいくつかのパラメータと初期条件を含む。
これらの結果から, 日中感染率, ワクチン有効性, および, 広範囲の社会的ワクチン依存度, デンタルレベルにおいて, パンデミックの経時的変化について広範な研究を行った。
論文 参考訳(メタデータ) (2021-08-27T19:12:13Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
アミノ酸の順序を保つことで,分類器の精度が向上することを示す。
また,アメリカ疾病予防管理センター(CDC)が報告した,変異の同定に重要な役割を担っているアミノ酸の重要性も示した。
論文 参考訳(メタデータ) (2021-08-07T15:08:15Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS(Controlled Latent attribute Space Smpling)は、分子の属性制御のための効率的な計算手法である。
深層学習分類器と原子論シミュレーションから得られた新しい特徴を併用して, 生成分子を付加的なキー属性としてスクリーニングする。
提案手法は, 強い広帯域能を有する非毒性抗菌性ペプチド(AMP)を設計するためのものである。
論文 参考訳(メタデータ) (2020-05-22T15:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。