論文の概要: Cross-Domain Consumer Review Analysis
- arxiv url: http://arxiv.org/abs/2212.13916v1
- Date: Fri, 23 Dec 2022 18:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 14:17:03.966970
- Title: Cross-Domain Consumer Review Analysis
- Title(参考訳): クロスドメイン消費者レビュー分析
- Authors: Aditya Pandey, Kunal Joshi
- Abstract要約: 論文では、Amazon、Yelp、Steam、IMDbの4つの人気のあるレビューデータセットについて、ドメイン間のレビュー分析を行う。
この分析はHadoopとSparkを使って行われ、大規模なデータセットの効率的でスケーラブルな処理を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a cross-domain review analysis on four popular review
datasets: Amazon, Yelp, Steam, IMDb. The analysis is performed using Hadoop and
Spark, which allows for efficient and scalable processing of large datasets. By
examining close to 12 million reviews from these four online forums, we hope to
uncover interesting trends in sales and customer sentiment over the years. Our
analysis will include a study of the number of reviews and their distribution
over time, as well as an examination of the relationship between various review
attributes such as upvotes, creation time, rating, and sentiment. By comparing
the reviews across different domains, we hope to gain insight into the factors
that drive customer satisfaction and engagement in different product
categories.
- Abstract(参考訳): この論文は、amazon、yelp、steam、imdbの4つの人気のあるレビューデータセットについて、クロスドメインレビュー分析を行う。
この分析はhadoopとsparkを使って行われ、大規模なデータセットの効率的でスケーラブルな処理を可能にする。
これら4つのオンラインフォーラムのレビューを1200万件近く調べることで、今後数年間のセールスと顧客感情の興味深いトレンドを明らかにしたいと考えています。
分析には、レビュー数とその時間的分布についての研究に加えて、アップボイト、作成時間、評価、感情など、さまざまなレビュー属性の関係について調べる。
さまざまなドメインのレビューを比較することで、さまざまな製品カテゴリにおける顧客満足度とエンゲージメントを促進する要因に関する洞察を得たいと考えています。
関連論文リスト
- Analytical and Empirical Study of Herding Effects in Recommendation Systems [72.6693986712978]
評価アグリゲーションルールとショートリストされた代表レビューを用いて製品評価を管理する方法について検討する。
本稿では,Amazon と TripAdvisor の収束速度を向上させるために,適切な信頼度評価アグリゲーションルールが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-20T14:29:23Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
感性分析(SA)はテキストマイニングにおける新たな分野である。
これは、異なるソーシャルメディアプラットフォーム上でテキストで表現された意見を計算的に識別し、分類するプロセスである。
論文 参考訳(メタデータ) (2023-11-19T06:29:41Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
レビュー要約(review summarization)は、Eコマースのウェブサイトで製品レビューのメインの考え方を要約することを目的とした、簡単ではないタスクである。
Heterogeneous Historical Review aware Review Summarization Model (HHRRS)を提案する。
我々は、レビュー感情分類と要約を共同で行うマルチタスクフレームワークを採用している。
論文 参考訳(メタデータ) (2023-01-27T12:32:55Z) - Cross-Domain Shopping and Stock Trend Analysis [0.0]
本稿では,株価,株価,Twitterの株価,およびeコマースサイトにおけるユーザの行動の関係を識別・分析することを目的としたドメイン間トレンド分析を提案する。
この分析は、米国株データセット、ストックツイートデータセット、Eコマース行動データセットの3つのデータセットに基づいている。
論文 参考訳(メタデータ) (2022-12-23T18:21:28Z) - 5-Star Hotel Customer Satisfaction Analysis Using Hybrid Methodology [0.0]
我々の研究は、レビューデータから顧客満足度を判断する新しい方法を提案する。
これまで実施されてきた顧客満足度に関する多くの研究とは異なり、本研究は論文の新規性を持っている。
論文 参考訳(メタデータ) (2022-09-26T04:53:10Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Abstractive Opinion Tagging [65.47649273721679]
eコマースでは、意見タグは、アイテムのレビューの特徴を反映したEコマースプラットフォームが提供するタグのランクリストを指す。
意見タグを生成するための現在のメカニズムは、手作業またはラベル付け方法に依存します。
AOT-Net と呼ばれる抽象的な意見タグフレームワークを提案し、多数のレビューからランク付けされた意見タグのリストを生成します。
論文 参考訳(メタデータ) (2021-01-18T05:08:15Z) - Sentiment Analysis on Customer Responses [0.0]
そこでは、意見マイニング、テキストマイニング、感情を利用する。
本研究は, スマートフォンを肯定的, 否定的, 中立的行動に分け, さまざまな意見の感傷的分析を行う。
論文 参考訳(メタデータ) (2020-07-05T04:50:40Z) - A Unified Dual-view Model for Review Summarization and Sentiment
Classification with Inconsistency Loss [51.448615489097236]
ユーザーレビューから正確な要約と感情を取得することは、現代のEコマースプラットフォームにとって不可欠な要素である。
本稿では,これら2つのタスクの性能を協調的に改善する新しいデュアルビューモデルを提案する。
異なる領域の4つの実世界のデータセットに対する実験結果から,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2020-06-02T13:34:11Z) - Topic Detection and Summarization of User Reviews [6.779855791259679]
本稿では,レビューと要約の両方を解析して,効果的な新しい要約手法を提案する。
製品レビューと約1028の製品からなる新しいデータセットが、AmazonとCNETから収集されている。
論文 参考訳(メタデータ) (2020-05-30T02:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。