State Carving in a Chirally-Coupled Atom-Nanophotonic Cavity
- URL: http://arxiv.org/abs/2212.13927v3
- Date: Tue, 18 Apr 2023 04:01:53 GMT
- Title: State Carving in a Chirally-Coupled Atom-Nanophotonic Cavity
- Authors: W. S. Hiew and H. H. Jen
- Abstract summary: We study the reflectivity spectrum in an atom-photonic cavity with collective nonreciprocal couplings.
Our results pave the way toward quantum engineering of multiqubit states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent quantum control of multiqubit systems represents one of the
challenging tasks in quantum science and quantum technology. Here we
theoretically investigate the reflectivity spectrum in an atom-nanophotonic
cavity with collective nonreciprocal couplings. In the strong-coupling regime
with a high cooperativity, we theoretically predict distinct on-resonance
spectral dips owing to destructive interferences of chiral couplings. Due to
the well-separated multiple dips in the spectrum, a contrasted reflectivity
suggests a new control knob over the desired entangled state preparation. We
propose to utilize such atom-nanophotonic cavity to quantum engineer the atomic
internal states via photon-mediated dipole-dipole interactions and the
chirality of decay channels, where the atomic Bell state and W states for
arbitrary number of atoms can be tailored and heralded by state carving in the
single-photon reflection spectrum. Our results pave the way toward quantum
engineering of multiqubit states and offer new opportunities for coherent and
scalable multipartite entanglement transport in atoms coupled to nanophotonic
devices.
Related papers
- Excitation spectrum of a multilevel atom coupled with a dielectric
nanostructure [0.0]
We calculate the excitation spectrum of a single-electron atom localized near a dielectric nanostructure.
In particular, the strong resonance interaction between atom(s) and light, propagating through a photonic crystal waveguide, justifies as realistic the scenario of a signal light coupling with a small atomic array consisting of a few atoms.
As a potential implication, the directional one-dimensional resonance scattering, expected in such systems, could provide a quantum bus by entangling distant atoms integrated into a quantum register.
arXiv Detail & Related papers (2023-12-14T21:17:12Z) - Resonance fluorescence of a chiral artificial atom [0.28675177318965034]
We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide.
Our demonstration puts forth a superconducting hardware platform for the realization of several key functionalities pursued within the paradigm of chiral quantum optics.
arXiv Detail & Related papers (2022-12-21T22:59:43Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Continuous quantum light from a dark atom [2.5015682396550543]
We report on a quantum-nonlinear wave-mixing experiment where resonant lasers and an optical cavity define a closed cycle between several ground and excited states of a single atom.
We show that, for strong atom-cavity coupling and steady-state driving, the entanglement between the atomic states and intracavity photon number suppresses the excited-state population via quantum interference.
The system dynamics then result from transitions within a harmonic ladder of entangled dark states, one for each cavity photon number, and a quantum Zeno blockade that generates antibunching in the photons emitted from the cavity.
arXiv Detail & Related papers (2021-03-01T17:19:29Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Cavity quantum optomechanics with an atom-array membrane [0.0]
We consider a quantum optomechanical scheme where an ordered two-dimensional array of laser-trapped atoms is used as a movable membrane.
The extremely light mass of the atoms yields very strong optomechanical coupling, while their spatial order largely eliminates scattering losses.
We show that this combination opens the way for quantum optomechanical nonlinearities, well within the ultimate single-photon strong-coupling regime.
arXiv Detail & Related papers (2020-06-02T23:09:32Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.