Synthesis of Adversarial DDOS Attacks Using Tabular Generative
Adversarial Networks
- URL: http://arxiv.org/abs/2212.14109v1
- Date: Wed, 14 Dec 2022 18:55:04 GMT
- Title: Synthesis of Adversarial DDOS Attacks Using Tabular Generative
Adversarial Networks
- Authors: Abdelmageed Ahmed Hassan, Mohamed Sayed Hussein, Ahmed Shehata
AboMoustafa, Sarah Hossam Elmowafy
- Abstract summary: New types of attacks stand out as the technology of attacks keep evolving.
One of these attacks are the attacks based on Generative Adversarial Networks (GAN) that can evade machine learning IDS leaving them vulnerable.
This project investigates the impact of the Adversarial Attacks synthesized using real DDoS attacks generated using GANs on the IDS.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Network Intrusion Detection Systems (NIDS) are tools or software that are
widely used to maintain the computer networks and information systems keeping
them secure and preventing malicious traffics from penetrating into them, as
they flag when somebody is trying to break into the system. Best effort has
been set up on these systems, and the results achieved so far are quite
satisfying, however, new types of attacks stand out as the technology of
attacks keep evolving, one of these attacks are the attacks based on Generative
Adversarial Networks (GAN) that can evade machine learning IDS leaving them
vulnerable. This project investigates the impact of the Adversarial Attacks
synthesized using real DDoS attacks generated using GANs on the IDS. The
objective is to discover how will these systems react towards synthesized
attacks. marking the vulnerability and weakness points of these systems so we
could fix them.
Related papers
- When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Zero-day DDoS Attack Detection [0.0]
This project aims to solve the task of detecting zero-day DDoS attacks by utilizing network traffic that is captured before entering a private network.
Modern feature extraction techniques are used in conjunction with neural networks to determine if a network packet is either benign or malicious.
arXiv Detail & Related papers (2022-08-31T17:14:43Z) - Early Detection of Network Attacks Using Deep Learning [0.0]
A network intrusion detection system (IDS) is a tool used for identifying unauthorized and malicious behavior by observing the network traffic.
We propose an end-to-end early intrusion detection system to prevent network attacks before they could cause any more damage to the system under attack.
arXiv Detail & Related papers (2022-01-27T16:35:37Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z) - A Targeted Attack on Black-Box Neural Machine Translation with Parallel
Data Poisoning [60.826628282900955]
We show that targeted attacks on black-box NMT systems are feasible, based on poisoning a small fraction of their parallel training data.
We show that this attack can be realised practically via targeted corruption of web documents crawled to form the system's training data.
Our results are alarming: even on the state-of-the-art systems trained with massive parallel data, the attacks are still successful (over 50% success rate) under surprisingly low poisoning budgets.
arXiv Detail & Related papers (2020-11-02T01:52:46Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT
Networks [30.68108039722565]
Internet of Things (IoT) devices are susceptible to being compromised and being part of a new type of stealthy Distributed Denial of Service (DDoS) attack, called Mongolian DDoS.
This study proposes a novel anomaly-based Intrusion Detection System (IDS) that is capable of timely detecting and mitigating this emerging type of DDoS attacks.
arXiv Detail & Related papers (2020-06-15T00:54:49Z) - G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System [1.5119440099674917]
We propose a generative adversarial network (GAN) based intrusion detection system (G-IDS)
G-IDS generates synthetic samples, and IDS gets trained on them along with the original ones.
We find that our proposed G-IDS model performs much better in attack detection and model stabilization during the training process than a standalone IDS.
arXiv Detail & Related papers (2020-06-01T02:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.