論文の概要: Robust Bayesian Subspace Identification for Small Data Sets
- arxiv url: http://arxiv.org/abs/2212.14132v1
- Date: Thu, 29 Dec 2022 00:29:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 17:35:23.547344
- Title: Robust Bayesian Subspace Identification for Small Data Sets
- Title(参考訳): 小さなデータセットに対するロバストベイズ部分空間同定
- Authors: Alexandre Rodrigues Mesquita
- Abstract要約: 分散効果を低減するため,正規化推定器,縮小推定器,ベイズ推定器を提案する。
実験の結果,提案した推定器は従来の部分空間法よりも40%のコストで推定リスクを低減できることがわかった。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model estimates obtained from traditional subspace identification methods may
be subject to significant variance. This elevated variance is aggravated in the
cases of large models or of a limited sample size. Common solutions to reduce
the effect of variance are regularized estimators, shrinkage estimators and
Bayesian estimation. In the current work we investigate the latter two
solutions, which have not yet been applied to subspace identification. Our
experimental results show that our proposed estimators may reduce the
estimation risk up to $40\%$ of that of traditional subspace methods.
- Abstract(参考訳): 従来の部分空間同定法から得られたモデル推定は、大きなばらつきを受ける可能性がある。
この高次分散は、大きなモデルの場合や限られたサンプルサイズでは悪化する。
分散の効果を減らすための一般的な解は正規化推定器、縮小推定器、ベイズ推定である。
現在の研究では、部分空間同定にはまだ適用されていない後者の2つの解について検討する。
実験の結果,提案した推定器は従来の部分空間法よりも最大40 %のコストで推定リスクを低減できることがわかった。
関連論文リスト
- One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Correcting sampling biases via importance reweighting for spatial
modeling [2.6862667248315386]
機械学習モデルでは、分布バイアスによってエラーの見積もりが複雑になることが多い。
本稿では,重要サンプリングの考え方に基づいて,対象誤差の偏りのない推定値を求める手法を提案する。
論文 参考訳(メタデータ) (2023-09-09T15:36:28Z) - Differentially Private Estimation via Statistical Depth [0.0]
統計深度という2つの概念は、新しい近似DP位置と回帰推定器の動機付けに使用される。
推定値および/または観測値の事前境界をユーザが指定することを避けるため、これらのDP機構の変種を記述する。
論文 参考訳(メタデータ) (2022-07-26T01:59:07Z) - Uncertainty Estimation for Heatmap-based Landmark Localization [4.673063715963989]
推定誤差境界を持つ不確実性によって予測を分類するデータ駆動手法であるQuantile Binningを提案する。
この枠組みは,3つの不確実性対策を比較し,対比することによって実証する。
我々は、Quantile Binsで捕捉された大まかな誤予測をフィルタリングすることで、許容可能なエラー閾値下での予測の割合を大幅に改善する、という結論を導いた。
論文 参考訳(メタデータ) (2022-03-04T14:40:44Z) - On Variance Estimation of Random Forests [0.0]
本稿では,不完全U-統計量に基づく不偏分散推定器を開発する。
我々は,計算コストを増大させることなく,より低いバイアスとより正確な信頼区間のカバレッジを評価できることを示した。
論文 参考訳(メタデータ) (2022-02-18T03:35:47Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
我々は,複数のロギングポリシからオフ政治評価を行い,それぞれが一定のサイズ,すなわち階層化サンプリングのデータセットを生成する。
複数ロガーのOPE推定器は,任意のインスタンス,すなわち効率のよいインスタンスに対して最小分散である。
論文 参考訳(メタデータ) (2020-10-21T13:43:48Z) - Telescoping Density-Ratio Estimation [21.514983459970903]
我々は、テレスコープ密度比推定(TRE)という新しいフレームワークを導入する。
TREは高次元空間における高相似密度の比を推定できる。
実験により、TREは既存の単一比法よりも大幅に改善できることが示された。
論文 参考訳(メタデータ) (2020-06-22T12:55:06Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
本稿では,大きさn$のランダムサンプルからフィッシャー情報の位置推定の問題について考察する。
Bhattacharyaにより提案された推定器を再検討し、収束率の向上を導出する。
クリッピング推定器と呼ばれる新しい推定器を提案する。
論文 参考訳(メタデータ) (2020-05-07T17:21:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。