Restricting to the chip architecture maintains the quantum neural network accuracy
- URL: http://arxiv.org/abs/2212.14426v2
- Date: Fri, 29 Mar 2024 14:45:11 GMT
- Title: Restricting to the chip architecture maintains the quantum neural network accuracy
- Authors: Lucas Friedrich, Jonas Maziero,
- Abstract summary: variational quantum algorithms (VQAs) are a prominent strategy for constructing quantum machine learning models.
This article aims to address several critical questions, such as determining the optimal gate sequence, efficient parameter optimization strategies, and understanding the influence of quantum chip architectures on the final results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of noisy intermediate-scale quantum devices, variational quantum algorithms (VQAs) stand as a prominent strategy for constructing quantum machine learning models. These models comprise both a quantum and a classical component. The quantum facet is characterized by a parametrization $U$, typically derived from the composition of various quantum gates. On the other hand, the classical component involves an optimizer that adjusts the parameters of $U$ to minimize a cost function $C$. Despite the extensive applications of VQAs, several critical questions persist, such as determining the optimal gate sequence, devising efficient parameter optimization strategies, selecting appropriate cost functions, and understanding the influence of quantum chip architectures on the final results. This article aims to address the last question, emphasizing that, in general, the cost function tends to converge towards an average value as the utilized parameterization approaches a $2$-design. Consequently, when the parameterization closely aligns with a $2$-design, the quantum neural network model's outcome becomes less dependent on the specific parametrization. This insight leads to the possibility of leveraging the inherent architecture of quantum chips to define the parametrization for VQAs. By doing so, the need for additional swap gates is mitigated, consequently reducing the depth of VQAs and minimizing associated errors.
Related papers
- A Quantum Circuit-Based Compression Perspective for Parameter-Efficient Learning [19.178352290785153]
We introduce Quantum s Adaptation (QPA) in the framework of quantum parameter generation.
QPA integrates QNNs with a classical multi-layer perceptron mapping model to generate parameters for fine-tuning methods.
Using Gemma-2 and GPT-2 as case studies, QPA demonstrates significant parameter reduction for parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-10-13T14:09:29Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Pre-optimizing variational quantum eigensolvers with tensor networks [1.4512477254432858]
We present and benchmark an approach where we find good starting parameters for parameterized quantum circuits by simulating VQE.
We apply this approach to the 1D and 2D Fermi-Hubbard model with system sizes that use up to 32 qubits.
In 2D, the parameters that VTNE finds have significantly lower energy than their starting configurations, and we show that starting VQE from these parameters requires non-trivially fewer operations to come down to a given energy.
arXiv Detail & Related papers (2023-10-19T17:57:58Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum-classical tradeoffs and multi-controlled quantum gate decompositions in variational algorithms [0.4677099525783277]
computational capabilities of near-term quantum computers are limited by the noisy execution of gate operations and a limited number of physical qubits.
Hybrid variational algorithms are well-suited to near-term quantum devices because they allow for a wide range of tradeoffs between the amount of quantum and classical resources used to solve a problem.
This paper investigates tradeoffs available at both the algorithmic and hardware levels by studying a specific case.
arXiv Detail & Related papers (2022-10-10T00:25:18Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.