論文の概要: A novel cluster internal evaluation index based on hyper-balls
- arxiv url: http://arxiv.org/abs/2212.14524v1
- Date: Fri, 30 Dec 2022 02:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 15:38:26.269694
- Title: A novel cluster internal evaluation index based on hyper-balls
- Title(参考訳): ハイパーボールに基づく新しいクラスタ内部評価指標
- Authors: Jiang Xie, Pengfei Zhao, Shuyin Xia, Guoyin Wang, Dongdong Cheng
- Abstract要約: クラスタ分析において、品質を評価し、最適なクラスタ数を決定することが重要である。
本稿では,データセットの多粒度特徴付けを行い,ハイパーボールを得る。
ハイパーボール(HCVI)に基づくクラスタ内部評価指標を定義する。
- 参考スコア(独自算出の注目度): 11.048887848164268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is crucial to evaluate the quality and determine the optimal number of
clusters in cluster analysis. In this paper, the multi-granularity
characterization of the data set is carried out to obtain the hyper-balls. The
cluster internal evaluation index based on hyper-balls(HCVI) is defined.
Moreover, a general method for determining the optimal number of clusters based
on HCVI is proposed. The proposed methods can evaluate the clustering results
produced by the several classic methods and determine the optimal cluster
number for data sets containing noises and clusters with arbitrary shapes. The
experimental results on synthetic and real data sets indicate that the new
index outperforms existing ones.
- Abstract(参考訳): クラスタ分析において、品質を評価し、最適なクラスタ数を決定することが重要である。
本稿では,データセットの多面的特徴付けを行い,ハイパーボールを得る。
ハイパーボール(HCVI)に基づくクラスタ内部評価指標を定義する。
さらに,hcviに基づくクラスタの最適数を決定する一般的な方法を提案する。
提案手法は,いくつかの古典的手法によるクラスタリング結果を評価し,任意の形状のノイズやクラスタを含むデータセットに対して最適なクラスタ数を決定する。
合成および実データ集合の実験結果から,新たな指標が既存の指標より優れていたことが示唆された。
関連論文リスト
- ABCDE: Application-Based Cluster Diff Evals [49.1574468325115]
それは実用性を目指しており、アイテムはアプリケーション固有の重要な値を持つことができ、クラスタリングがどちらが優れているかを判断するときに人間の判断を使うのは粗悪であり、アイテムの任意のスライスのためのメトリクスを報告できる。
クラスタリング品質の差分を測定するアプローチは、高価な地平を前もって構築し、それに関して各クラスタリングを評価する代わりに、ABCDEはクラスタリング間の実際の差分に基づいて、判定のための質問をサンプリングする。
論文 参考訳(メタデータ) (2024-07-31T08:29:35Z) - From A-to-Z Review of Clustering Validation Indices [4.08908337437878]
我々は、最も一般的なクラスタリングアルゴリズムを用いて、内部および外部クラスタリング検証指標の性能をレビューし、評価する。
内部クラスタリング検証と外部クラスタリング検証の両方の機能を調べるための分類フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-18T13:52:02Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Clustering performance analysis using new correlation based cluster
validity indices [0.0]
本研究では,2つのデータポイント間の実際の距離と,2つのポイントが位置するクラスタのセントロイド距離との相関に基づく2つの新しいクラスタ妥当性指標を開発した。
提案した指標は, 前述した弱点を克服する異なる数のクラスタにおいて, 常にいくつかのピークを発生させる。
論文 参考訳(メタデータ) (2021-09-23T06:59:41Z) - The Three Ensemble Clustering (3EC) Algorithm for Pattern Discovery in
Unsupervised Learning [1.0465883970481493]
3つのアンサンブルクラスタリング3EC」アルゴリズムは、教師なし学習の一部として、ラベルなしデータを品質クラスタに分類する。
各分割クラスタは、新しいデータセットと見なされ、最も最適なアルゴリズムを探索する候補である。
ユーザは、さまざまな停止基準を試すことができ、最も意味のあるグループの品質クラスタを選択することができる。
論文 参考訳(メタデータ) (2021-07-08T10:15:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - A New Validity Index for Fuzzy-Possibilistic C-Means Clustering [6.174448419090291]
Fuzzy-Possibilistic (FP)指数は、形状や密度の異なるクラスターの存在下でうまく機能する。
FPCMはファジィの度合いと典型性の度合いを事前選択する必要がある。
論文 参考訳(メタデータ) (2020-05-19T01:48:13Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。