VertMatch: A Semi-supervised Framework for Vertebral Structure Detection
in 3D Ultrasound Volume
- URL: http://arxiv.org/abs/2212.14747v1
- Date: Wed, 28 Dec 2022 06:50:35 GMT
- Title: VertMatch: A Semi-supervised Framework for Vertebral Structure Detection
in 3D Ultrasound Volume
- Authors: Hongye Zeng, kang Zhou, Songhan Ge, Yuchong Gao, Jianhao Zhao,
Shenghua Gao, Rui Zheng
- Abstract summary: Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment.
Current assessment method only uses coronal projection image and cannot illustrate the 3D deformity and vertebra rotation.
We propose VertMatch, a two-step framework to detect vertebral structures in 3D ultrasound volume.
- Score: 26.29675263407612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Three-dimensional (3D) ultrasound imaging technique has been applied for
scoliosis assessment, but current assessment method only uses coronal
projection image and cannot illustrate the 3D deformity and vertebra rotation.
The vertebra detection is essential to reveal 3D spine information, but the
detection task is challenging due to complex data and limited annotations. We
propose VertMatch, a two-step framework to detect vertebral structures in 3D
ultrasound volume by utilizing unlabeled data in semi-supervised manner. The
first step is to detect the possible positions of structures on transverse
slice globally, and then the local patches are cropped based on detected
positions. The second step is to distinguish whether the patches contain real
vertebral structures and screen the predicted positions from the first step.
VertMatch develops three novel components for semi-supervised learning: for
position detection in the first step, (1) anatomical prior is used to screen
pseudo labels generated from confidence threshold method; (2) multi-slice
consistency is used to utilize more unlabeled data by inputting multiple
adjacent slices; (3) for patch identification in the second step, the
categories are rebalanced in each batch to solve imbalance problem.
Experimental results demonstrate that VertMatch can detect vertebra accurately
in ultrasound volume and outperforms state-of-the-art methods. VertMatch is
also validated in clinical application on forty ultrasound scans, and it can be
a promising approach for 3D assessment of scoliosis.
Related papers
- RayEmb: Arbitrary Landmark Detection in X-Ray Images Using Ray Embedding Subspace [0.7937206070844555]
Intra-operative 2D-3D registration of X-ray images with pre-operatively acquired CT scans is a crucial procedure in orthopedic surgeries.
We propose a novel method to address this issue by detecting arbitrary landmark points in X-ray images.
arXiv Detail & Related papers (2024-10-10T17:36:21Z) - SpineCLUE: Automatic Vertebrae Identification Using Contrastive Learning
and Uncertainty Estimation [12.427024671144869]
Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease.
Existing methods at the spine-level are unable to meet this challenge.
We propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level.
arXiv Detail & Related papers (2024-01-14T12:02:39Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - 3D unsupervised anomaly detection and localization through virtual
multi-view projection and reconstruction: Clinical validation on low-dose
chest computed tomography [2.2302915692528367]
We propose a method based on a deep neural network for computer-aided diagnosis called virtual multi-view projection and reconstruction.
The proposed method improves the patient-level anomaly detection by 10% compared with a gold standard based on supervised learning.
It localizes the anomaly region with 93% accuracy, demonstrating its high performance.
arXiv Detail & Related papers (2022-06-18T13:22:00Z) - Interpretable Vertebral Fracture Quantification via Anchor-Free
Landmarks Localization [0.04925906256430176]
Vertebral body compression fractures are early signs of osteoporosis.
We propose a new two-step algorithm to localize the vertebral column in 3D CT images.
We then detect individual vertebrae and quantify fractures in 2D simultaneously.
arXiv Detail & Related papers (2022-04-14T08:31:25Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using
Image Sequence Classification [55.96221340756895]
Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up.
We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data.
Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image clas-sifier using a recurrent neural network to generate two sets of predictions in real-time.
The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7$circ$ (1.2$circ$) from
arXiv Detail & Related papers (2020-10-06T13:55:02Z) - Keypoints Localization for Joint Vertebra Detection and Fracture
Severity Quantification [0.04925906256430176]
Vertebral body compression fractures are reliable early signs of osteoporosis.
We propose a new two-step algorithm to localize the vertebral column in 3D CT images.
We simultaneously detect individual vertebrae and quantify fractures in 2D.
arXiv Detail & Related papers (2020-05-25T08:05:27Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.