論文の概要: Comparative Analysis of Clustering Techniques for Personalized Food Kit
Distribution
- arxiv url: http://arxiv.org/abs/2212.14874v1
- Date: Fri, 30 Dec 2022 18:42:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 15:46:39.346561
- Title: Comparative Analysis of Clustering Techniques for Personalized Food Kit
Distribution
- Title(参考訳): パーソナライズされた食材分布のクラスタリング技術の比較分析
- Authors: Jude Francis, Rowan K Baby, Jacob Abraham and Ajmal P.S
- Abstract要約: ケララ政府はパンデミックによる無料食品キットの供給頻度を増大させた。
本稿では,実世界のデータセットのスケールダウンバージョンにおいて,様々なクラスタリング手法の比較分析を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Government of Kerala had increased the frequency of supply of free food
kits owing to the pandemic, however, these items were static and not indicative
of the personal preferences of the consumers. This paper conducts a comparative
analysis of various clustering techniques on a scaled-down version of a
real-world dataset obtained through a conjoint analysis-based survey.
Clustering carried out by centroid-based methods such as k means is analyzed
and the results are plotted along with SVD, and finally, a conclusion is
reached as to which among the two is better. Once the clusters have been
formulated, commodities are also decided upon for each cluster. Also,
clustering is further enhanced by reassignment, based on a specific cluster
loss threshold. Thus, the most efficacious clustering technique for designing a
food kit tailored to the needs of individuals is finally obtained.
- Abstract(参考訳): ケララ政府はパンデミックによる無料食材キットの供給頻度を増大させたが、これらは静的であり、消費者の個人的な嗜好を示すものではない。
本稿では,コンジョイント分析に基づく調査により得られた実世界のデータセットのスケールダウン版において,様々なクラスタリング手法の比較分析を行う。
k平均のようなセンタロイドベースの手法で実施したクラスタリングを解析し、svdと共に結果をプロットし、最終的にこの2つのうちどちらが優れているかを結論付ける。
クラスタが定式化されると、各クラスタの商品も決定される。
また、クラスタリングは特定のクラスタ損失閾値に基づいて再割り当てによってさらに強化される。
これにより、個人のニーズに合わせた食品キットを設計するための最も効率的なクラスタリング技術が最終的に得られる。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Quality check of a sample partition using multinomial distribution [0.0]
我々は、サンプルのクラスタパーティションの品質をいくつかの異なるクラスに分類する目的で、新しい尺度を提唱する。
我々は,各クラスタの代表者からグループにクラスタ化されたデータメンバーの距離に,多項分布を適用した。
論文 参考訳(メタデータ) (2024-04-11T14:14:58Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
サンプル安定性(DECS)により駆動されるディープ埋め込みクラスタリングアルゴリズムを提案する。
具体的には、まずオートエンコーダで初期特徴空間を構築し、次にサンプル安定性に制約されたクラスタ指向の埋め込み機能を学ぶ。
5つのデータセットに対する実験結果から,提案手法は最先端のクラスタリング手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-01-29T09:19:49Z) - A Machine Learning-Based Framework for Clustering Residential
Electricity Load Profiles to Enhance Demand Response Programs [0.0]
実ケーススタディを通じて最適な負荷プロファイルを実現するために,機械学習に基づく新しいフレームワークを提案する。
本稿では,実ケーススタディを通じて最適な負荷プロファイルを実現するために,機械学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T11:23:26Z) - Non-parametric Clustering of Multivariate Populations with Arbitrary
Sizes [0.0]
K群を同じ依存構造を持つ部分群に分類するクラスタリング手法を提案する。
数値的な研究と2つの実際のデータセットを通してクラスタリングアルゴリズムを説明します。
論文 参考訳(メタデータ) (2022-11-11T16:38:29Z) - Self-Evolutionary Clustering [1.662966122370634]
既存のディープクラスタリング手法の多くは、単純な距離比較に基づいており、手作り非線形マッピングによって生成されたターゲット分布に大きく依存している。
新たなモジュール型自己進化クラスタリング(Self-EvoC)フレームワークが構築され,自己管理的な分類によってクラスタリング性能が向上する。
このフレームワークは、サンプルアウトレイラを効率よく識別し、自己監督の助けを借りて、より良い目標分布を生成することができる。
論文 参考訳(メタデータ) (2022-02-21T19:38:18Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。