Exploring the Use of Data-Driven Approaches for Anomaly Detection in the
Internet of Things (IoT) Environment
- URL: http://arxiv.org/abs/2301.00134v1
- Date: Sat, 31 Dec 2022 06:28:58 GMT
- Title: Exploring the Use of Data-Driven Approaches for Anomaly Detection in the
Internet of Things (IoT) Environment
- Authors: Eleonora Achiluzzi, Menglu Li, Md Fahd Al Georgy, and Rasha Kashef
- Abstract summary: The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies.
Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions.
Research on anomaly detection in the IoT environment has become popular and necessary in recent years.
- Score: 4.724825031148412
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Internet of Things (IoT) is a system that connects physical computing
devices, sensors, software, and other technologies. Data can be collected,
transferred, and exchanged with other devices over the network without
requiring human interactions. One challenge the development of IoT faces is the
existence of anomaly data in the network. Therefore, research on anomaly
detection in the IoT environment has become popular and necessary in recent
years. This survey provides an overview to understand the current progress of
the different anomaly detection algorithms and how they can be applied in the
context of the Internet of Things. In this survey, we categorize the widely
used anomaly detection machine learning and deep learning techniques in IoT
into three types: clustering-based, classification-based, and deep learning
based. For each category, we introduce some state-of-the-art anomaly detection
methods and evaluate the advantages and limitations of each technique.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping [0.0]
Internet of Things (IoT) has enabled the collection of large volumes of data from industrial machinery.
However, the volume and complexity of data generated by the Internet of Things ecosystems make it difficult for humans to detect anomalies manually.
Machine learning (ML) algorithms can automate anomaly detection in industrial machinery by analyzing generated data.
arXiv Detail & Related papers (2023-07-28T20:58:00Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices.
Data collected by IoT contain a tremendous amount of information for anomaly detection.
In this paper, we present a study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection.
arXiv Detail & Related papers (2023-07-20T05:23:49Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Wireless Sensor Networks anomaly detection using Machine Learning: A
Survey [1.2699602067359046]
Wireless Sensor Networks (WSNs) have become increasingly valuable in various civil/military applications.
The sensed data generated by WSNs is often noisy and unreliable, making it a challenge to detect and diagnose anomalies.
Machine learning (ML) techniques have been widely used to address this problem by detecting and identifying unusual patterns in the sensed data.
arXiv Detail & Related papers (2023-03-15T15:02:11Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.