Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping
- URL: http://arxiv.org/abs/2307.15807v2
- Date: Tue, 14 Nov 2023 11:37:11 GMT
- Title: Anomaly Detection in Industrial Machinery using IoT Devices and Machine
Learning: a Systematic Mapping
- Authors: S\'ergio F. Chevtchenko, Elisson da Silva Rocha, Monalisa Cristina
Moura Dos Santos, Ricardo Lins Mota, Diego Moura Vieira, Ermeson Carneiro de
Andrade, Danilo Ricardo Barbosa de Ara\'ujo
- Abstract summary: Internet of Things (IoT) has enabled the collection of large volumes of data from industrial machinery.
However, the volume and complexity of data generated by the Internet of Things ecosystems make it difficult for humans to detect anomalies manually.
Machine learning (ML) algorithms can automate anomaly detection in industrial machinery by analyzing generated data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection is critical in the smart industry for preventing equipment
failure, reducing downtime, and improving safety. Internet of Things (IoT) has
enabled the collection of large volumes of data from industrial machinery,
providing a rich source of information for Anomaly Detection. However, the
volume and complexity of data generated by the Internet of Things ecosystems
make it difficult for humans to detect anomalies manually. Machine learning
(ML) algorithms can automate anomaly detection in industrial machinery by
analyzing generated data. Besides, each technique has specific strengths and
weaknesses based on the data nature and its corresponding systems. However, the
current systematic mapping studies on Anomaly Detection primarily focus on
addressing network and cybersecurity-related problems, with limited attention
given to the industrial sector. Additionally, these studies do not cover the
challenges involved in using ML for Anomaly Detection in industrial machinery
within the context of the IoT ecosystems. This paper presents a systematic
mapping study on Anomaly Detection for industrial machinery using IoT devices
and ML algorithms to address this gap. The study comprehensively evaluates 84
relevant studies spanning from 2016 to 2023, providing an extensive review of
Anomaly Detection research. Our findings identify the most commonly used
algorithms, preprocessing techniques, and sensor types. Additionally, this
review identifies application areas and points to future challenges and
research opportunities.
Related papers
- IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
Video anomaly detection (VAD) is a challenging task aiming to recognize anomalies in video frames.
We propose a new dataset, IPAD, specifically designed for VAD in industrial scenarios.
This dataset covers 16 different industrial devices and contains over 6 hours of both synthetic and real-world video footage.
arXiv Detail & Related papers (2024-04-23T13:38:01Z) - Intelligent Condition Monitoring of Industrial Plants: An Overview of
Methodologies and Uncertainty Management Strategies [2.600463444320238]
This paper provides an overview of intelligent condition monitoring and fault detection and diagnosis methods for industrial plants.
The most popular and state-of-the-art deep learning (DL) and machine learning (ML) algorithms for industrial plant condition monitoring, fault detection, and diagnosis are summarized.
A comparison of the accuracies and specifications of different algorithms utilizing the Tennessee Eastman Process (TEP) is conducted.
arXiv Detail & Related papers (2024-01-03T21:35:03Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Wireless Sensor Networks anomaly detection using Machine Learning: A
Survey [1.2699602067359046]
Wireless Sensor Networks (WSNs) have become increasingly valuable in various civil/military applications.
The sensed data generated by WSNs is often noisy and unreliable, making it a challenge to detect and diagnose anomalies.
Machine learning (ML) techniques have been widely used to address this problem by detecting and identifying unusual patterns in the sensed data.
arXiv Detail & Related papers (2023-03-15T15:02:11Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
Recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD)
In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques.
We highlight several opening challenges for image anomaly detection.
arXiv Detail & Related papers (2023-01-27T03:18:09Z) - Exploring the Use of Data-Driven Approaches for Anomaly Detection in the
Internet of Things (IoT) Environment [4.724825031148412]
The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies.
Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions.
Research on anomaly detection in the IoT environment has become popular and necessary in recent years.
arXiv Detail & Related papers (2022-12-31T06:28:58Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors.
We show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.
arXiv Detail & Related papers (2021-02-11T02:37:27Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.