Chaos in Optomechanical Systems coupled to a Non-Markovian environment
- URL: http://arxiv.org/abs/2301.00138v2
- Date: Tue, 28 Jan 2025 01:08:20 GMT
- Title: Chaos in Optomechanical Systems coupled to a Non-Markovian environment
- Authors: Pengju Chen, Nan Yang, Austen Couvertier, Quanzhen Ding, Rupak Chatterjee, Ting Yu,
- Abstract summary: We show that the non-Markovian environment can significantly enhance chaos.<n>It is observed that non-Markovian environment characterized by the Ornstein-Uhlenbeck type noise can modify the generation of chaos.
- Score: 6.465785580904946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the chaotic motion of a semi-classical optomechanical system coupled to a non-Markovian environment with a finite correlation time. We show that the non-Markovian environment can significantly enhance chaos, by studying the emergence of chaos using Lyapunov exponent with the changing non-Markovian parameter. It is observed that non-Markovian environment characterized by the Ornstein-Uhlenbeck type noise can modify the generation of chaos with different environmental memory times. As a comparison, the crossover properties from Markov to non-Markovian regimes are also discussed. Our findings indicate that the quantum memory effects on the onset of chaos may become a useful property to be investigated in quantum manipulations and control.
Related papers
- Non-Markovian to Markovian decay in structured environments with correlated disorder [0.0]
We consider an atom coupled to an array of cavities in the presence of on-site correlated disorder.
The correlation is long-ranged and associated with the trace of a fractional Brownian motion following a power-law spectrum.
We observe a change from non-Markovian to Markovian decay in the presence of disorder by tuning the correlation parameter.
arXiv Detail & Related papers (2024-11-21T16:56:56Z) - Entanglement dynamics of a two-qutrits system coupled to a spin chain [0.0]
In this paper, we investigate the entanglement dynamics of a two qutrits system interacting with a spin environment.
The calculations show that in cases where the entanglement decays quickly, the environment will have a quantum phase transition.
arXiv Detail & Related papers (2024-07-29T02:52:39Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Probing quantum chaos with the entropy of decoherent histories [0.0]
Quantum chaos, a phenomenon that began to be studied in the last century, still does not have a rigorous understanding.
We propose the quantum chaos definition in the manner similar to the classical one using decoherent histories as a quantum analogue of trajectories.
We show that for such a model, the production of entropy of decoherent histories is radically different in integrable and chaotic regimes.
arXiv Detail & Related papers (2023-07-17T21:57:05Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Quantifying environment non-classicality in dissipative open quantum
dynamics [0.0]
We propose a measure that quantifies how far the environment action on a system departs from the influence of classical noise fluctuations.
It relies on the lack of commutativity between the initial reservoir state and the system-environment total Hamiltonian.
arXiv Detail & Related papers (2023-05-25T15:11:06Z) - Interplay between Non-Markovianity of Noise and Dynamics in Quantum
Systems [0.0]
Non-Markovianity of open quantum system dynamics is often associated with the bidirectional interchange of information between the system and its environment.
We have investigated the non-Markovianity of the dynamics of a two-state system driven by continuous time random walk-type noise.
arXiv Detail & Related papers (2023-03-25T19:07:31Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Quantum Chaos Control by Complex Trajectories [0.0]
In recent years, analysis and control of quantum chaos are increasingly important.
This research aims to connect Newton's world to the quantum world by the complex mechanics.
arXiv Detail & Related papers (2022-03-30T10:43:59Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Exploiting Gaussian steering to probe non-Markovianity due to the
interaction with a structured environment [0.0]
We employ the proposed measure to assess and compare the non-Markovianity of a quantum Brownian motion (QBM) channel.
We show that sub-Ohmic, high temperature environments lead to highly non-Markovian evolution.
Our results add to the understanding of the interplay between quantum correlations and non-Markovianity for CV systems.
arXiv Detail & Related papers (2021-04-25T20:06:09Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Chaos in Qubit Coupled Optomechanical Systems [0.0]
We have found stable chaotic solutions for optomechanical systems coupled with a Two-Level System or qubit.
This includes achieving chaos by changing the detuning, coupling parameters, and Power of the driving laser.
Chaotic motion was also observed in both the qubit and cavity by only changing the relative phase between of driving fields of the two.
arXiv Detail & Related papers (2021-02-28T14:21:31Z) - Distinguishing environment-induced non-Markovianity from subsystem
dynamics [0.0]
Quantum non-Markovianity modifies the environmental decoherence of a system.
We consider the problem of distinguishing the multiple sources of non-Markovianity using a simple power spectrum technique.
arXiv Detail & Related papers (2020-11-07T17:39:23Z) - Non-Markovian qubit dynamics in nonequilibrium environments [0.0]
We study the non-Markovian dynamics of qubit systems coupled to nonequilibrium environments with nonstationary and non-Markovian statistical properties.
We derive the relation between the entanglement and nonlocality of the two qubit system which are both closely associated with the decoherence function.
arXiv Detail & Related papers (2020-08-03T04:44:42Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.