論文の概要: Yuille-Poggio's Flow and Global Minimizer of Polynomials through Convexification by Heat Evolution
- arxiv url: http://arxiv.org/abs/2301.00326v2
- Date: Tue, 7 May 2024 09:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 20:42:53.470503
- Title: Yuille-Poggio's Flow and Global Minimizer of Polynomials through Convexification by Heat Evolution
- Title(参考訳): 熱進化による凸化によるユイユ・ポッジョの流れとポリノミアルの地球最小化
- Authors: Qiao Wang,
- Abstract要約: 本研究では,O. Arikan textitet al が citeABK で導入した,大域的最小化のための後方微分フローアルゴリズムの凸化バージョンについて検討した。
我々は,Steklov正則化の累積形式として機能する濾過と併用した凸化熱進化法を用いる。
O. Arikan et al. citeABK の結果を反映するだけでなく、ニュートンの手法の非常に単純なバージョンも示しており、常に凸化せずにクォートを極端に最小化することができる。
- 参考スコア(独自算出の注目度): 5.976447444084449
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study examines the convexification version of the backward differential flow algorithm for the global minimization of polynomials, introduced by O. Arikan \textit{et al} in \cite{ABK}. It investigates why this approach might fail with high-degree polynomials yet succeeds with quartic polynomials. We employ the heat evolution method for convexification combined with Gaussian filtering, which acts as a cumulative form of Steklov's regularization. In this context, we apply the fingerprint theory from computer vision. Originally developed by A.L. Yuille and T. Poggio in the 1980s for computer vision, the fingerprint theory, particularly the fingerprint trajectory equation, is used to illustrate the scaling (temporal) evolution of minimizers. In the case of general polynomials, our research has led to the creation of the Yuille-Poggio flow and a broader interpretation of the fingerprint concepts, in particular we establish the condition both sufficient and necessary for the convexified backward differential flow algorithms to successfully achieve global minimization. For quartic polynomials, our analysis not only reflects the results of O. Arikan et al. \cite{ABK} but also presents a significantly simpler version of Newton's method that can always globally minimize quartic polynomials without convexification.
- Abstract(参考訳): 本研究では,O. Arikan \textit{et al} in \cite{ABK} が導入した,多項式の大域的最小化のための逆微分フローアルゴリズムの凸化バージョンについて検討した。
このアプローチが高次多項式で失敗するが、クォート多項式で成功する理由を調査する。
我々は,Steklov正則化の累積形式として機能するガウスフィルタと併用した凸化熱進化法を用いる。
この文脈では,コンピュータビジョンから指紋理論を適用する。
A.L. Yuille と T. Poggio が1980年代にコンピュータビジョンのために開発した指紋理論、特に指紋軌跡方程式は、最小化器のスケーリング(時間的)進化を説明するために用いられる。
一般多項式の場合,本研究はユユ・ポッジョ流の創出と指紋概念のより広範な解釈に繋がるものである。
クォート多項式について、我々の解析はO. Arikan et al \cite{ABK} の結果を反映するだけでなく、常に凸化を伴わないクォート多項式を大域的に最小化できるニュートンの方法の非常に単純なバージョンも提示する。
関連論文リスト
- The Complexity of Algebraic Algorithms for LWE [0.0]
我々は、LWEシステム上でのGr"オブナー基底計算の複雑さを研究するために、Arora-Geモデルを再検討する。
我々は、Semaev & TentiのGr"obner基底アルゴリズムを有限の正則性を持つ任意の系に一般化する。
論文 参考訳(メタデータ) (2024-02-12T17:59:26Z) - Covering Number of Real Algebraic Varieties and Beyond: Improved Bounds and Applications [8.438718130535296]
ユークリッド空間における集合の被覆数について上限を証明する。
ここでは、イムディン・コントによる最もよく知られた一般境界が改善されることが示される。
本稿では,3つの計算応用における結果のパワーについて説明する。
論文 参考訳(メタデータ) (2023-11-09T03:06:59Z) - A Unified Algebraic Perspective on Lipschitz Neural Networks [88.14073994459586]
本稿では,様々なタイプの1-Lipschitzニューラルネットワークを統一する新しい視点を提案する。
そこで本研究では,SDP(Common semidefinite Programming)条件の解析解を求めることによって,既存の多くの手法を導出し,一般化することができることを示す。
SDPベースのLipschitz Layers (SLL) と呼ばれる我々のアプローチは、非自明で効率的な凸ポテンシャル層の一般化を設計できる。
論文 参考訳(メタデータ) (2023-03-06T14:31:09Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - A framework for overparameterized learning [0.0]
ディープニューラルネットワークの成功に関する説明は、理論的機械学習における中心的な問題である。
本稿では,多くの一般的な問題をカバーするのに十分な,プロトタイプ学習問題からなるフレームワークを提案する。
次に、教師付き学習、変分オートエンコーダ、勾配ペナルティによるトレーニングがプロトタイプ問題に変換可能であることを示す。
論文 参考訳(メタデータ) (2022-05-26T17:17:46Z) - DASHA: Distributed Nonconvex Optimization with Communication
Compression, Optimal Oracle Complexity, and No Client Synchronization [77.34726150561087]
我々は,分散最適化問題に対する新しい手法であるDASHAを開発し,解析する。
MARINAとは異なり、新しいDASHAとDASHA-MVRは圧縮ベクターのみを送信し、ノードを同期しないため、学習をより実用的なものにしている。
論文 参考訳(メタデータ) (2022-02-02T20:10:40Z) - On the existence of global minima and convergence analyses for gradient
descent methods in the training of deep neural networks [3.198144010381572]
フィードフォワード深層ReLU ANNを任意に多数の隠蔽層で研究する。
我々は,そのようなANNの訓練において,ランダムなGD最適化手法のリスクを収束させることを証明した。
また、勾配流微分方程式の解も研究する。
論文 参考訳(メタデータ) (2021-12-17T18:55:40Z) - Semi-Sparsity for Smoothing Filters [1.1404527665142667]
本稿では,新しい疎度誘導フレームワークに基づく半疎度平滑化アルゴリズムを提案する。
我々は、一連の信号/画像処理とコンピュータビジョンアプリケーションに多くの利点を示す。
論文 参考訳(メタデータ) (2021-07-01T17:31:42Z) - A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise [55.45544638410858]
本研究では,Tsybakovノイズの存在下でのPAC学習の相同性半空間の問題について検討する。
我々のアルゴリズムは、任意の精度$epsilon$で真のハーフスペースを学習する。
論文 参考訳(メタデータ) (2020-10-04T22:19:06Z) - Computational Barriers to Estimation from Low-Degree Polynomials [81.67886161671379]
本研究では,隠れ構造物の存在を検知する作業において,低次構造物のパワーについて検討する。
大規模な「信号+雑音」問題に対して、任意の程度に達成可能な最良の平均二乗誤差に対して、ユーザフレンドリな下界を与える。
応用として,植込みサブマトリクスに対する低次平均2乗誤差の厳密な評価と高密度サブグラフ問題について述べる。
論文 参考訳(メタデータ) (2020-08-05T17:52:10Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
我々はReLU回帰の根本的な問題を考察する。
目的は、未知の分布から引き出された2乗損失に対して、最も適したReLUを出力することである。
論文 参考訳(メタデータ) (2020-05-26T16:26:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。