論文の概要: Deep Recurrent Learning Through Long Short Term Memory and TOPSIS
- arxiv url: http://arxiv.org/abs/2301.00693v1
- Date: Fri, 30 Dec 2022 10:35:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 14:37:13.784035
- Title: Deep Recurrent Learning Through Long Short Term Memory and TOPSIS
- Title(参考訳): 長期記憶とTOPSISによる深部反復学習
- Authors: Rossi Kamal, Zuzana Kubincova, Mosaddek Hossain Kamal, Upama Kabir
- Abstract要約: クラウドコンピューティングの安価で簡単で迅速な管理の約束により、ビジネスオーナーはモノリシックからデータセンタ/クラウドベースのERPへの移行を迫られます。
クラウドERP開発には、計画、実装、テスト、アップグレードといった循環的なプロセスが伴うため、その採用はディープリカレントニューラルネットワーク問題として実現されている。
我々の理論モデルは、キープレーヤー、サービス、アーキテクチャ、機能を明確にすることで、参照モデル上で検証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprise resource planning (ERP) software brings resources, data together
to keep software-flow within business processes in a company. However, cloud
computing's cheap, easy and quick management promise pushes business-owners for
a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP
development involves a cyclic process, namely planning, implementing, testing
and upgrading, its adoption is realized as a deep recurrent neural network
problem. Eventually, a classification algorithm based on long short term memory
(LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption
features. Our theoretical model is validated over a reference model by
articulating key players, services, architecture, functionalities. Qualitative
survey is conducted among users by considering technology, innovation and
resistance issues, to formulate hypotheses on key adoption factors.
- Abstract(参考訳): エンタープライズリソース計画(ERP)ソフトウェアは、企業のビジネスプロセス内でソフトウェアフローを維持するために、リソースとデータをまとめます。
しかし、クラウドコンピューティングの安価で簡単で迅速な管理の約束は、ビジネスオーナーにモノリシックからデータセンター/クラウドベースのERPへの移行を迫る。
クラウドERP開発には、計画、実装、テスト、アップグレードといった循環的なプロセスが伴うため、その採用はディープリカレントニューラルネットワーク問題として実現されている。
最終的に、長寿命メモリ(LSTM)とTOPSISに基づく分類アルゴリズムが提案され、それぞれ採用特徴を識別およびランク付けする。
我々の理論モデルは、キープレーヤー、サービス、アーキテクチャ、機能を明確にすることで、参照モデル上で検証される。
技術,イノベーション,抵抗問題を考慮した質的調査を行い,主要な採用要因に関する仮説を定式化する。
関連論文リスト
- A proof of contribution in blockchain using game theoretical deep learning model [4.53216122219986]
本稿では,タスクスケジューリングとリソース提供に関して,サービス提供者間で合意に達するためのゲーム理論のディープラーニングモデルを提案する。
我々のモデルは最先端のモデルに比べてレイテンシを584%削減する。
論文 参考訳(メタデータ) (2024-08-25T12:40:19Z) - Swarm Learning: A Survey of Concepts, Applications, and Trends [3.55026004901472]
ディープラーニングモデルは、中央サーバ上の大規模なデータセットに依存しているため、プライバシとセキュリティの懸念を高めている。
Federated Learning (FL)は、汎用的で大規模な機械学習フレームワークを構築するための新しいアプローチを導入した。
Swarm Learning (SL) は Hewlett Packard Enterprise (HPE) と共同で提案されている。
SLは、セキュアでスケーラブルでプライベートなデータ管理にブロックチェーン技術を活用する、分散機械学習フレームワークである。
論文 参考訳(メタデータ) (2024-05-01T14:59:24Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - Double Deep Q-Learning-based Path Selection and Service Placement for
Latency-Sensitive Beyond 5G Applications [11.864695986880347]
本稿では,CCRAと呼ばれる通信資源割当と計算機資源割当の連立問題を,総コストを最小化するために検討する。
我々は,この問題を非線形プログラミングモデルとして定式化し,B&B-CCRAとWF-CCRAという2つのアプローチを提案する。
数値シミュレーションにより,B&B-CCRAが最適解であるのに対し,WF-CCRAは比較的短い時間でほぼ最適解を提供することがわかった。
論文 参考訳(メタデータ) (2023-09-18T22:17:23Z) - Concepts and Algorithms for Agent-based Decentralized and Integrated
Scheduling of Production and Auxiliary Processes [78.120734120667]
本稿ではエージェントベースの分散型統合スケジューリング手法について述べる。
要求の一部は、線形にスケールする通信アーキテクチャを開発することである。
このアプローチは、工業的要件に基づいた例を使って説明されます。
論文 参考訳(メタデータ) (2022-05-06T18:44:29Z) - Exploring the potential of flow-based programming for machine learning
deployment in comparison with service-oriented architectures [8.677012233188968]
理由のひとつは、データ収集と分析に関するアクティビティのために設計されていないインフラストラクチャである、と私たちは論じています。
本稿では,データストリームを用いたフローベースのプログラミングを,ソフトウェアアプリケーション構築に広く使用されるサービス指向アーキテクチャの代替として検討する。
論文 参考訳(メタデータ) (2021-08-09T15:06:02Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
インフラストラクチャ・アズ・ア・サービス(I)は、最も重要かつ急速に成長する分野の1つです。
私のクラウドコンピューティングの最も重要な側面の1つは、リソース管理です。
機械学習は、さまざまなリソース管理タスクを処理するために使用されます。
論文 参考訳(メタデータ) (2021-05-09T08:03:58Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
本稿では,連続信号と離散時系列をベースに投影してオンライン圧縮するための一般フレームワーク(HiPPO)を提案する。
過去の各時間ステップの重要性を示す尺度が与えられた場合、HiPPOは自然なオンライン関数近似問題に対する最適解を生成する。
このフォーマルなフレームワークは、すべての履歴を記憶するために時間をかけてスケールする新しいメモリ更新メカニズム(HiPPO-LegS)を提供する。
論文 参考訳(メタデータ) (2020-08-17T23:39:33Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。