SM2C: Boost the Semi-supervised Segmentation for Medical Image by using Meta Pseudo Labels and Mixed Images
- URL: http://arxiv.org/abs/2403.16009v1
- Date: Sun, 24 Mar 2024 04:39:40 GMT
- Title: SM2C: Boost the Semi-supervised Segmentation for Medical Image by using Meta Pseudo Labels and Mixed Images
- Authors: Yifei Wang, Chuhong Zhu,
- Abstract summary: We introduce Scaling-up Mix with Multi-Class (SM2C) to improve the ability to learn semantic features within medical images.
By diversifying the shape of the segmentation objects and enriching the semantic information within each sample, the SM2C demonstrates its potential.
The proposed framework shows significant improvements over state-of-the-art counterparts.
- Score: 13.971120210536995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, machine learning-based semantic segmentation algorithms have demonstrated their potential to accurately segment regions and contours in medical images, allowing the precise location of anatomical structures and abnormalities. Although medical images are difficult to acquire and annotate, semi-supervised learning methods are efficient in dealing with the scarcity of labeled data. However, overfitting is almost inevitable due to the limited images for training. Furthermore, the intricate shapes of organs and lesions in medical images introduce additional complexity in different cases, preventing networks from acquiring a strong ability to generalize. To this end, we introduce a novel method called Scaling-up Mix with Multi-Class (SM2C). This method uses three strategies - scaling-up image size, multi-class mixing, and object shape jittering - to improve the ability to learn semantic features within medical images. By diversifying the shape of the segmentation objects and enriching the semantic information within each sample, the SM2C demonstrates its potential, especially in the training of unlabelled data. Extensive experiments demonstrate the effectiveness of the SM2C on three benchmark medical image segmentation datasets. The proposed framework shows significant improvements over state-of-the-art counterparts.
Related papers
- Cross-model Mutual Learning for Exemplar-based Medical Image Segmentation [25.874281336821685]
Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
We introduce a novel Cross-model Mutual learning framework for Exemplar-based Medical image (CMEMS)
arXiv Detail & Related papers (2024-04-18T00:18:07Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
We propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation.
Our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner.
Our experiments demonstrate that MORSE can work well with different medical segmentation backbones.
arXiv Detail & Related papers (2023-04-06T16:44:03Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
We propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics.
We also address the preservation of scale information, a powerful tool in aiding image understanding.
The proposed unified SSL framework surpasses its self-supervised counterparts on various tasks.
arXiv Detail & Related papers (2023-01-02T17:47:27Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation [8.307551496968156]
We present CUTS, an unsupervised deep learning framework for medical image segmentation.
For each image, it produces an embedding map via intra-image contrastive learning and local patch reconstruction.
CUTS yields a series of coarse-to-fine-grained segmentations that highlight features at various granularities.
arXiv Detail & Related papers (2022-09-23T01:09:06Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
We propose a cross-level constrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation.
With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance.
arXiv Detail & Related papers (2022-02-08T15:12:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.