論文の概要: Deep Spectral Q-learning with Application to Mobile Health
- arxiv url: http://arxiv.org/abs/2301.00927v1
- Date: Tue, 3 Jan 2023 01:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 14:22:24.692347
- Title: Deep Spectral Q-learning with Application to Mobile Health
- Title(参考訳): 深部スペクトルq-learningとモバイルヘルスへの応用
- Authors: Yuhe Gao, Chengchun Shi and Rui Song
- Abstract要約: 混合周波数データを扱うためのスペクトルQ-ラーニングアルゴリズムを提案する。
理論的には、推定された最適ポリシーの下での平均回帰が最適ポリシーの下での平均回帰に収束し、その収束率を確立することが証明される。
- 参考スコア(独自算出の注目度): 11.736014576781903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic treatment regimes assign personalized treatments to patients
sequentially over time based on their baseline information and time-varying
covariates. In mobile health applications, these covariates are typically
collected at different frequencies over a long time horizon. In this paper, we
propose a deep spectral Q-learning algorithm, which integrates principal
component analysis (PCA) with deep Q-learning to handle the mixed frequency
data. In theory, we prove that the mean return under the estimated optimal
policy converges to that under the optimal one and establish its rate of
convergence. The usefulness of our proposal is further illustrated via
simulations and an application to a diabetes dataset.
- Abstract(参考訳): 動的治療体制は、基準情報と時間変化の共変量に基づいて、経時的にパーソナライズされた治療を患者に割り当てる。
モバイル健康アプリケーションでは、これらの共変量は通常、長い時間をかけて異なる周波数で収集される。
本稿では,主成分分析(pca)と深部q学習を統合し,混合周波数データを扱う深部スペクトルq学習アルゴリズムを提案する。
理論的には、推定された最適ポリシーの下での平均回帰が最適ポリシーの下での平均回帰に収束し、その収束率を確立する。
本提案の有用性はシミュレーションと糖尿病データセットへの適用によりさらに示される。
関連論文リスト
- Online Statistical Inference for Time-varying Sample-averaged Q-learning [2.2374171443798034]
本稿では,バッチ平均Qラーニングの時間変化を,サンプル平均Qラーニングと呼ぶ。
本研究では, サンプル平均化アルゴリズムの正規性について, 温和な条件下での洞察を提供する新しい枠組みを開発する。
古典的なOpenAI Gym環境下で行った数値実験により、サンプル平均Q-ラーニングの時間変化は、シングルサンプルQ-ラーニングと定数バッチQ-ラーニングのどちらよりも一貫して優れていた。
論文 参考訳(メタデータ) (2024-10-14T17:17:19Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - BCQQ: Batch-Constraint Quantum Q-Learning with Cyclic Data Re-uploading [2.502222151305252]
量子コンピューティングの最近の進歩は、量子モデルは古典的手法に比べて訓練に必要なデータが少ないことを示唆している。
離散バッチ制約深部Q-ラーニングアルゴリズムにおいて,VQCを関数近似器として利用するバッチRLアルゴリズムを提案する。
我々は,OpenAI CartPole環境におけるアルゴリズムの有効性を評価し,その性能を従来のニューラルネットワークに基づく離散BCQと比較した。
論文 参考訳(メタデータ) (2023-04-27T16:43:01Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Federated Offline Reinforcement Learning [55.326673977320574]
マルチサイトマルコフ決定プロセスモデルを提案する。
我々は,オフラインRLを対象とした最初のフェデレーション最適化アルゴリズムを設計する。
提案アルゴリズムでは,学習ポリシーの準最適性は,データが分散していないような速度に匹敵する,理論的保証を与える。
論文 参考訳(メタデータ) (2022-06-11T18:03:26Z) - Conformal Prediction with Temporal Quantile Adjustments [40.282423098764404]
断続時系列データに対する回帰のための効率よく有効な予測区間(PI)を構築する手法を開発した。
我々は広範囲な実験を通じてTQAの性能を評価する。
論文 参考訳(メタデータ) (2022-05-20T03:31:03Z) - LSTM-Autoencoder based Anomaly Detection for Indoor Air Quality Time
Series Data [6.642599588462097]
室内空気質(IAQ)データの異常検出は、空気の質が人間の健康と健康と密接に関連しているため、研究の重要領域となっている。
IAQ領域における異常検出における従来の統計と機械学習に基づくアプローチは、複数のデータポイントにわたる相関の観測を含む異常を検出できなかった。
本稿では,LSTMとオートエンコーダを組み合わせたハイブリッドディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2022-04-14T01:57:46Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Large-scale Augmented Granger Causality (lsAGC) for Connectivity
Analysis in Complex Systems: From Computer Simulations to Functional MRI
(fMRI) [0.0]
本稿では,複合システムにおける接続解析の方法として,大規模Augmented Granger Causality (lsAGC)を導入している。
lsAGCアルゴリズムは、寸法低減とソース時系列拡張を組み合わせた。
合成指向性時系列ネットワーク上での lsAGC の性能を定量的に評価する。
論文 参考訳(メタデータ) (2021-01-10T01:44:48Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。