Towards optimization under uncertainty for fundamental models in energy
markets using quantum computers
- URL: http://arxiv.org/abs/2301.01108v1
- Date: Tue, 3 Jan 2023 14:07:15 GMT
- Title: Towards optimization under uncertainty for fundamental models in energy
markets using quantum computers
- Authors: M.C. Braun, T. Decker, N. Hegemann, S.F. Kerstan, F. Lorenz
- Abstract summary: We suggest a first approach to consider uncertainties in the renewable energy supply, power demand and machine failures.
We show how to find cost-saving solutions of the UCP under these uncertainties on quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to formulate the unit commitment problem in energy
production as quadratic unconstrained binary optimization (QUBO) problem, which
can be solved by classical algorithms and quantum computers. We suggest a first
approach to consider uncertainties in the renewable energy supply, power demand
and machine failures. We show how to find cost-saving solutions of the UCP
under these uncertainties on quantum computers. We also conduct a study with
different problem sizes and we compare results of simulated annealing with
results from quantum annealing machines.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Optimization for the Future Energy Grid: Summary and Quantum Utility Prospects [0.0]
"Q-GRID" aims to assess potential quantum utility optimization applications in the electrical grid.
The project focuses on two layers of optimization problems relevant to decentralized energy generation and transmission as well as novel energy transportation/exchange methods such as Peer-2-Peer energy trading and microgrid formation.
arXiv Detail & Related papers (2024-03-26T08:52:54Z) - Assessing Quantum Computing Performance for Energy Optimization in a
Prosumer Community [1.072460284847973]
"Prosumer problem" is the problem of scheduling the household loads on the basis of the user needs, the electricity prices, and the availability of local renewable energy.
Quantum computers can offer a significant breakthrough in treating this problem thanks to the intrinsic parallel nature of quantum operations.
We report on an extensive set of experiments, on simulators and real quantum hardware, for different problem sizes.
arXiv Detail & Related papers (2023-11-17T15:48:51Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum and quantum-inspired optimization for solving the minimum bin
packing problem [0.0]
We consider the problem of filling spent nuclear fuel in deep-repository canisters that is relevant for atomic energy industry.
We first redefine the aforementioned problem it in terms of quadratic unconstrained binary optimization.
Results of our study indicate on the possibility to solve industry-relevant problems of atomic energy industry using quantum and quantum-inspired optimization.
arXiv Detail & Related papers (2023-01-26T18:04:18Z) - A Quantum Computing Approach for the Unit Commitment Problem [0.0]
Planning energy production is a challenging task due to its cost-sensitivity, fast-moving energy markets, uncertainties in demand, and technical constraints of power plants.
In this article, we model a UCP with minimum running and idle times as a unconstrained quadratic optimization problem to solve it on quantum computing hardware.
First experiments confirm the advantages of our formulation in terms of qubit usage and connectivity and most importantly solution quality.
arXiv Detail & Related papers (2022-12-13T11:01:42Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Quantum Permutation Synchronization [88.4588059792167]
We present QuantumSync, the quantum algorithm for solving a quantum vision problem in the context of computer vision.
We show how to insert permutation constraints into a QUBO problem and to solve the constrained QUBO problem on the current generation of the abatic quantum DWave computer.
arXiv Detail & Related papers (2021-01-19T17:51:02Z) - Optimizing the Optimizer: Decomposition Techniques for Quantum Annealing [0.0]
Current generation quantum computers are too small to solve real-world problems.
In this work, we explore multiple heterogeneous approaches to solving benchmark problems.
Our results indicate that solver performance is highly dependent on the structure of the problem graph.
arXiv Detail & Related papers (2020-01-16T21:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.