論文の概要: Pattern Recognition Experiments on Mathematical Expressions
- arxiv url: http://arxiv.org/abs/2301.01624v1
- Date: Wed, 21 Dec 2022 10:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 05:46:04.376236
- Title: Pattern Recognition Experiments on Mathematical Expressions
- Title(参考訳): 数式におけるパターン認識実験
- Authors: David Naccache and Ofer Yifrach-Stav
- Abstract要約: 予測結果のいくつか例を挙げるが、いずれも新規性については徹底的に確認されていない。
我々は、その世代に見いだされ、焦点を当てたすべての関係を証明しようとはしなかった。
- 参考スコア(独自算出の注目度): 1.3960152426268768
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We provide the results of pattern recognition experiments on mathematical
expressions.
We give a few examples of conjectured results. None of which was thoroughly
checked for novelty. We did not attempt to prove all the relations found and
focused on their generation.
- Abstract(参考訳): 数学的表現におけるパターン認識実験の結果について述べる。
予測結果のいくつかの例を挙げる。
いずれも新鮮さを徹底的にチェックしたものではない。
我々は、その世代で発見された全ての関係を証明しようとはしなかった。
関連論文リスト
- Learning Formal Mathematics From Intrinsic Motivation [34.986025832497255]
ミニモ(Minimo)は、自分自身に問題を起こし、それを解決することを学ぶエージェント(理論実証)である。
制約付き復号法と型指向合成法を組み合わせて、言語モデルから有効な予想をサンプリングする。
我々のエージェントは、ハードだが証明可能な予想を生成することを目標としています。
論文 参考訳(メタデータ) (2024-06-30T13:34:54Z) - Showing Proofs, Assessing Difficulty with GeoGebra Discovery [0.6873734657629765]
我々は、GeoGebra Discoveryによって実行される異なるステップのシーケンスを出力して、特定のステートメントを確認する新しいShowProofコマンドと、アサーションの難易度や関心度を評価しようとする数値について説明する。
論文 参考訳(メタデータ) (2024-01-22T12:50:12Z) - Tree-Based Representation and Generation of Natural and Mathematical
Language [77.34726150561087]
科学コミュニケーションと教育シナリオにおける数学的言語は重要であるが、比較的研究されている。
数学言語に関する最近の研究は、スタンドアローンな数学的表現や、事前訓練された自然言語モデルにおける数学的推論に焦点をあてている。
テキストと数学を共同で表現・生成するために,既存の言語モデルに対する一連の修正を提案する。
論文 参考訳(メタデータ) (2023-02-15T22:38:34Z) - Semantic Representations of Mathematical Expressions in a Continuous
Vector Space [0.0]
この研究は連続ベクトル空間における数学的表現を表現するためのアプローチを記述する。
我々は、視覚的に異なるが数学的に等価な表現に基づいて訓練されたシーケンス・ツー・シーケンス・アーキテクチャのエンコーダを用いて、ベクトル表現を生成する。
論文 参考訳(メタデータ) (2022-10-08T22:33:39Z) - NaturalProver: Grounded Mathematical Proof Generation with Language
Models [84.2064569475095]
自然数理言語における定理証明は、数学の進歩と教育において中心的な役割を果たす。
本研究では,背景参照を条件づけて証明を生成する言語モデルであるNaturalProverを開発する。
NaturalProverは、短い(2-6ステップ)証明を必要とするいくつかの定理を証明でき、40%の時間で正しいと評価された次のステップの提案を提供することができる。
論文 参考訳(メタデータ) (2022-05-25T17:01:18Z) - Empowering Language Understanding with Counterfactual Reasoning [141.48592718583245]
本稿では,反現実的思考を模倣した反現実的推論モデルを提案する。
特に,各実例に対して代表的対実サンプルを生成する生成モジュールを考案し,その対実サンプルと実例サンプルを比較してモデル予測を振り返るレトロスペクティブモジュールを考案した。
論文 参考訳(メタデータ) (2021-06-06T06:36:52Z) - NaturalProofs: Mathematical Theorem Proving in Natural Language [132.99913141409968]
数学的ステートメントの多領域コーパスであるNaturalProofsとその証明を開発した。
NaturalProofsは広範なカバレッジ、深いカバレッジ、低リソースの数学的ソースを統一する。
数式参照検索と生成タスクに関する強力なニューラルネットワーク手法をベンチマークする。
論文 参考訳(メタデータ) (2021-03-24T03:14:48Z) - A Sober Look at the Unsupervised Learning of Disentangled
Representations and their Evaluation [63.042651834453544]
モデルとデータの両方に帰納的バイアスを伴わずに,非教師なしの非教師付き表現学習は不可能であることを示す。
異なる手法は、対応する損失によって「強化」された特性を効果的に強制するが、よく見分けられたモデルは監督なしでは特定できないように見える。
以上の結果から,遠絡学習における今後の研究は,帰納的バイアスと(単純に)監督の役割を明確化すべきであることが示唆された。
論文 参考訳(メタデータ) (2020-10-27T10:17:15Z) - Weakly-Supervised Disentanglement Without Compromises [53.55580957483103]
インテリジェントエージェントは、環境の変化を観察することで、有用な表現を学べるべきである。
変動の要因の少なくとも1つを共有する非I.d.画像のペアとしてそのような観測をモデル化する。
我々は,どの因子が変化したかのみを知るだけで,非絡み合った表現を学ぶのに十分であることを示す。
論文 参考訳(メタデータ) (2020-02-07T16:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。