論文の概要: FireFly: A High-Throughput and Reconfigurable Hardware Accelerator for
Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2301.01905v1
- Date: Thu, 5 Jan 2023 04:28:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 14:02:00.607896
- Title: FireFly: A High-Throughput and Reconfigurable Hardware Accelerator for
Spiking Neural Networks
- Title(参考訳): FireFly: ニューラルネットワークをスパイクするための高速で再構成可能なハードウェアアクセラレータ
- Authors: Jindong Li and Guobin Shen and Dongcheng Zhao and Qian Zhang and Zeng
Yi
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、強い生物学的解釈性と高エネルギー効率のために広く利用されている。
フィールドプログラマブルゲートアレイ(FPGA)のためのほとんどのSNNハードウェア実装は、演算やメモリ効率の要求を満たすことができない。
発火ニューロンから発生するスパイクをオンザフライ(FireFly)で処理できるFPGAアクセラレータを提案する。
- 参考スコア(独自算出の注目度): 4.187225766373149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have been widely used due to their strong
biological interpretability and high energy efficiency. With the introduction
of the backpropagation algorithm and surrogate gradient, the structure of
spiking neural networks has become more complex, and the performance gap with
artificial neural networks has gradually decreased. However, most SNN hardware
implementations for field-programmable gate arrays (FPGAs) cannot meet
arithmetic or memory efficiency requirements, which significantly restricts the
development of SNNs. They do not delve into the arithmetic operations between
the binary spikes and synaptic weights or assume unlimited on-chip RAM
resources by using overly expensive devices on small tasks. To improve
arithmetic efficiency, we analyze the neural dynamics of spiking neurons,
generalize the SNN arithmetic operation to the multiplex-accumulate operation,
and propose a high-performance implementation of such operation by utilizing
the DSP48E2 hard block in Xilinx Ultrascale FPGAs. To improve memory
efficiency, we design a memory system to enable efficient synaptic weights and
membrane voltage memory access with reasonable on-chip RAM consumption.
Combining the above two improvements, we propose an FPGA accelerator that can
process spikes generated by the firing neuron on-the-fly (FireFly). FireFly is
implemented on several FPGA edge devices with limited resources but still
guarantees a peak performance of 5.53TSOP/s at 300MHz. As a lightweight
accelerator, FireFly achieves the highest computational density efficiency
compared with existing research using large FPGA devices.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)はその強い生物学的解釈性と高いエネルギー効率のために広く利用されている。
バックプロパゲーションアルゴリズムとサロゲート勾配の導入により、スパイクニューラルネットワークの構造はより複雑になり、人工ニューラルネットワークのパフォーマンスギャップは徐々に減少していった。
しかし、フィールドプログラマブルゲートアレイ(FPGA)のためのほとんどのSNNハードウェア実装は、演算やメモリ効率の要求を満たすことができず、SNNの開発を著しく制限している。
彼らはバイナリスパイクとシナプス重みの間の算術演算を掘り下げたり、小さなタスクで非常に高価なデバイスを使用することで、チップ上のRAMリソースを無制限に仮定したりしない。
計算効率を向上させるために,スパイキングニューロンの神経動力学を解析し,sn演算を多重蓄積演算に一般化し,xilinx超大規模fpgaにおけるdsp48e2ハードブロックを用いた高性能な演算実装を提案する。
メモリ効率を向上させるため,メモリの省力化を図り,メモリの省力化と膜電圧のメモリアクセスを実現する。
上記の2つの改良を組み合わさって、発火ニューロン(FireFly)が生み出すスパイクを処理できるFPGAアクセラレータを提案する。
FireFlyは限られたリソースを持つFPGAエッジデバイスで実装されているが、300MHzでの5.53TSOP/sのピーク性能は保証されている。
軽量アクセラレータとしてFireFlyは,大規模FPGAデバイスを用いた既存研究と比較して計算密度効率が最も高い。
関連論文リスト
- Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology [2.968768532937366]
Spiking Neural Networks(SNN)は、機械学習モデルのエネルギー効率を改善するための有望なアプローチとして登場した。
我々は,ソフトウェア学習深層ニューラルネットワーク(DNN)を高精度スパイキングモデルに移植するハードウェア・ソフトウェア共同最適化戦略を開発した。
論文 参考訳(メタデータ) (2024-10-07T05:04:13Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - FireFly v2: Advancing Hardware Support for High-Performance Spiking
Neural Network with a Spatiotemporal FPGA Accelerator [8.0611988136866]
Spiking Neural Networks(SNN)は、Artificial Neural Networks(ANN)の代替として期待されている。
特殊なSNNハードウェアは、電力と性能の点で汎用デバイスよりも明確な優位性を提供する。
FPGA SNNアクセラレータであるFireFly v2は、現在のSOTA SNNアルゴリズムにおける非スパイク操作の問題に対処することができる。
論文 参考訳(メタデータ) (2023-09-28T04:17:02Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
我々は、フィールドプログラマブルゲートアレイ(FPGA)を用いた分散AI訓練システムのための新しいスマートネットワークインタフェースカード(NIC)を提案する。
提案するFPGAベースのAIスマートNICは,従来のNICを用いたベースラインシステムと比較して,6ノードで1.6倍,32ノードで2.5倍の性能向上が期待できる。
論文 参考訳(メタデータ) (2022-04-22T21:57:00Z) - Efficient Hardware Acceleration of Sparsely Active Convolutional Spiking
Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)は、標準のニューラルネットワークよりも効率的な計算を実現するために、イベントベースで計算する。
本稿では,高いアクティベーション間隔を有する畳み込みSNNの処理に最適化された新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-23T14:18:58Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータは、グラフィックス処理ユニット/中央処理ユニットベースのプラットフォームを置き換える深刻な競争相手として注目を集めています。
本稿では,資源とエネルギー効率,超低遅延FPGAベースニューラルネットワークアクセラレータ構築のためのフレームワークであるNullaNet Tinyを提案する。
論文 参考訳(メタデータ) (2021-04-07T00:16:39Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。