Domain Generalization via Ensemble Stacking for Face Presentation Attack
Detection
- URL: http://arxiv.org/abs/2301.02145v2
- Date: Sat, 16 Sep 2023 08:25:01 GMT
- Title: Domain Generalization via Ensemble Stacking for Face Presentation Attack
Detection
- Authors: Usman Muhammad, Jorma Laaksonen, Djamila Romaissa Beddiar, and Mourad
Oussalah
- Abstract summary: Face Presentation Attack Detection (PAD) plays a pivotal role in securing face recognition systems against spoofing attacks.
This work proposes a comprehensive solution that combines synthetic data generation and deep ensemble learning.
Experimental results on four datasets demonstrate low half total error rates (HTERs) on three benchmark datasets.
- Score: 4.61143637299349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face Presentation Attack Detection (PAD) plays a pivotal role in securing
face recognition systems against spoofing attacks. Although great progress has
been made in designing face PAD methods, developing a model that can generalize
well to unseen test domains remains a significant challenge. Moreover, due to
different types of spoofing attacks, creating a dataset with a sufficient
number of samples for training deep neural networks is a laborious task. This
work proposes a comprehensive solution that combines synthetic data generation
and deep ensemble learning to enhance the generalization capabilities of face
PAD. Specifically, synthetic data is generated by blending a static image with
spatiotemporal encoded images using alpha composition and video distillation.
This way, we simulate motion blur with varying alpha values, thereby generating
diverse subsets of synthetic data that contribute to a more enriched training
set. Furthermore, multiple base models are trained on each subset of synthetic
data using stacked ensemble learning. This allows the models to learn
complementary features and representations from different synthetic subsets.
The meta-features generated by the base models are used as input to a new model
called the meta-model. The latter combines the predictions from the base
models, leveraging their complementary information to better handle unseen
target domains and enhance the overall performance. Experimental results on
four datasets demonstrate low half total error rates (HTERs) on three benchmark
datasets: CASIA-MFSD (8.92%), MSU-MFSD (4.81%), and OULU-NPU (6.70%). The
approach shows potential for advancing presentation attack detection by
utilizing large-scale synthetic data and the meta-model.
Related papers
- Syn2Real Domain Generalization for Underwater Mine-like Object Detection Using Side-Scan Sonar [1.7851018240619703]
This paper proposes a Syn2Real (Synthetic to Real) domain generalization approach using diffusion models to address this challenge.
We demonstrate that synthetic data generated with noise by DDPM and DDIM models, even if not perfectly realistic, can effectively augment real-world samples for training.
arXiv Detail & Related papers (2024-10-16T18:42:08Z) - MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis [35.07663680944459]
Deep learning technology has been successfully introduced into Automatic Modulation Recognition (AMR) tasks.
The success of deep learning is all attributed to the training on large-scale datasets.
In order to solve the problem of large amount of data, some researchers put forward the method of data distillation.
arXiv Detail & Related papers (2024-08-05T14:16:54Z) - On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
This study evaluates the performance of classical tree-based models and advanced neural networks in protein-ligand binding affinity prediction.
We show that combining 2D and 3D model strengths improves active learning outcomes beyond current state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-15T13:06:00Z) - Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition [0.2775636978045794]
We study the drift between the performance of models trained on real and synthetic datasets.
We conduct studies on the differences between real and synthetic datasets on the attribute set.
Interestingly enough, we have verified that while real samples suffice to explain the synthetic distribution, the opposite could not be further from being true.
arXiv Detail & Related papers (2024-04-23T17:10:49Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
This work proposes a data driven learning model for the synthesis of keystroke biometric data.
The proposed method is compared with two statistical approaches based on Universal and User-dependent models.
Our experimental framework considers a dataset with 136 million keystroke events from 168 thousand subjects.
arXiv Detail & Related papers (2022-07-27T09:26:15Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
We develop novel synthetic data generation and augmentation techniques for enhancing low/zero-sample learning in satellite imagery.
To test the effectiveness of synthetic imagery, we employ it in the training of detection models and our two stage model, and evaluate the resulting models on real satellite images.
arXiv Detail & Related papers (2021-01-29T22:52:47Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.