論文の概要: Sequentially Controlled Text Generation
- arxiv url: http://arxiv.org/abs/2301.02299v1
- Date: Thu, 5 Jan 2023 21:23:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 23:16:04.997123
- Title: Sequentially Controlled Text Generation
- Title(参考訳): 逐次制御されたテキスト生成
- Authors: Alexander Spangher, Xinyu Hua, Yao Ming, Nanyun Peng
- Abstract要約: GPT-2は、驚くほど人間らしく、長い文書が混ざり合ったり、人間のような文章構造に従わなかったりする文を生成する。
本研究では,長距離テキストにおける命令構造の問題について検討する。
生成と編集が可能な逐次制御型テキスト生成パイプラインを開発した。
- 参考スコア(独自算出の注目度): 97.22539956688443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While GPT-2 generates sentences that are remarkably human-like, longer
documents can ramble and do not follow human-like writing structure. We study
the problem of imposing structure on long-range text. We propose a novel
controlled text generation task, sequentially controlled text generation, and
identify a dataset, NewsDiscourse as a starting point for this task. We develop
a sequential controlled text generation pipeline with generation and editing.
We test different degrees of structural awareness and show that, in general,
more structural awareness results in higher control-accuracy, grammaticality,
coherency and topicality, approaching human-level writing performance.
- Abstract(参考訳): GPT-2は、驚くほど人間らしい文を生成するが、長い文書は混乱し、人間のような文章構造に従わない。
長距離テキストにおける構造決定の問題について検討する。
本稿では,新しい制御されたテキスト生成タスクと逐次制御されたテキスト生成を提案し,このタスクの出発点としてデータセットであるNewsDiscourseを同定する。
生成と編集が可能な逐次制御型テキスト生成パイプラインを開発した。
我々は、構造的認識の度合いを試験し、一般に、より構造的意識がより高い制御精度、文法性、一貫性、話題性をもたらすことを示す。
関連論文リスト
- Instruct-SCTG: Guiding Sequential Controlled Text Generation through
Instructions [42.67608830386934]
Instruct-SCTGは、命令調整言語モデルを利用して構造的に一貫性のあるテキストを生成するシーケンシャルフレームワークである。
本フレームワークは,自然言語命令を用いて,所望の人体構造に整合して記事を生成する。
論文 参考訳(メタデータ) (2023-12-19T16:20:49Z) - Automatic and Human-AI Interactive Text Generation [27.05024520190722]
本チュートリアルは、最先端の自然言語生成研究の概要を提供する。
テキストからテキストへの生成タスクは、セマンティック一貫性とターゲット言語スタイルの観点からより制約される。
論文 参考訳(メタデータ) (2023-10-05T20:26:15Z) - RSTGen: Imbuing Fine-Grained Interpretable Control into Long-FormText
Generators [26.27412809287025]
RSTGenは、生成されたテキストの談話構造、セマンティクス、トピックを制御するフレームワークである。
オープンジェネレーション評価において、生成したテキストの構造的言論と意味的特徴を制御できるモデルの能力を実証する。
論文 参考訳(メタデータ) (2022-05-25T09:06:04Z) - Event Transition Planning for Open-ended Text Generation [55.729259805477376]
オープンエンドテキスト生成タスクは、事前コンテキストに制限されたコヒーレントな継続を生成するためにモデルを必要とする。
オープンエンドテキスト生成におけるイベントを明示的にアレンジする新しい2段階手法を提案する。
我々のアプローチは、特別に訓練された粗大なアルゴリズムとして理解することができる。
論文 参考訳(メタデータ) (2022-04-20T13:37:51Z) - PLANET: Dynamic Content Planning in Autoregressive Transformers for
Long-form Text Generation [47.97523895218194]
本稿では,自己回帰型自己認識機構を利用してコンテンツ計画と表面実現を動的に行う新しい生成フレームワークを提案する。
本フレームワークは,単語のバッグをベースとした文レベルのセマンティックプランを維持するために,トランスフォーマーデコーダを潜在表現で強化する。
論文 参考訳(メタデータ) (2022-03-17T05:52:35Z) - Data-to-text Generation with Variational Sequential Planning [74.3955521225497]
非言語的な入力からテキスト出力を生成することを目的としたデータ・ツー・テキスト生成の課題について考察する。
協調的かつ有意義な方法で高レベルの情報を整理する責任を負う計画要素を付加したニューラルモデルを提案する。
我々は、計画と生成のステップをインターリーブしながら、構造化された変動モデルで逐次、潜在計画を推測する。
論文 参考訳(メタデータ) (2022-02-28T13:17:59Z) - SCROLLS: Standardized CompaRison Over Long Language Sequences [62.574959194373264]
SCROLLSは長いテキストに対する推論を必要とするタスクのスイートである。
SCROLLSには要約、質問応答、自然言語推論タスクが含まれる。
すべてのデータセットを統一されたテキスト・ツー・テキスト形式で利用可能にし、モデルアーキテクチャと事前学習方法の研究を容易にするために、ライブのリーダーボードをホストします。
論文 参考訳(メタデータ) (2022-01-10T18:47:15Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
本稿では,デコード処理における文レベルと談話レベルにおけるプレフィックス文を表現可能な長文生成モデルを提案する。
我々のモデルは最先端のベースラインよりも一貫性のあるテキストを生成することができる。
論文 参考訳(メタデータ) (2021-05-19T07:29:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。