論文の概要: Conformal Loss-Controlling Prediction
- arxiv url: http://arxiv.org/abs/2301.02424v2
- Date: Tue, 23 Jan 2024 00:48:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-24 20:07:37.436893
- Title: Conformal Loss-Controlling Prediction
- Title(参考訳): 共形損失制御予測
- Authors: Di Wang, Ping Wang, Zhong Ji, Xiaojun Yang, Hongyue Li
- Abstract要約: コンフォーマル予測は、予測セットの予測カバレッジを制御する学習フレームワークである。
本研究では,損失関数の値を制御する必要がある状況に対して,共形予測を拡張した共形損失制御予測という学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.218535051437588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal prediction is a learning framework controlling prediction coverage
of prediction sets, which can be built on any learning algorithm for point
prediction. This work proposes a learning framework named conformal
loss-controlling prediction, which extends conformal prediction to the
situation where the value of a loss function needs to be controlled. Different
from existing works about risk-controlling prediction sets and conformal risk
control with the purpose of controlling the expected values of loss functions,
the proposed approach in this paper focuses on the loss for any test object,
which is an extension of conformal prediction from miscoverage loss to some
general loss. The controlling guarantee is proved under the assumption of
exchangeability of data in finite-sample cases and the framework is tested
empirically for classification with a class-varying loss and statistical
postprocessing of numerical weather forecasting applications, which are
introduced as point-wise classification and point-wise regression problems. All
theoretical analysis and experimental results confirm the effectiveness of our
loss-controlling approach.
- Abstract(参考訳): コンフォーマル予測は、予測セットの予測カバレッジを制御する学習フレームワークであり、任意の学習アルゴリズムに基づいてポイント予測を行うことができる。
本研究では,損失関数の値を制御する必要がある状況に対して,共形予測を拡張した共形損失制御予測という学習フレームワークを提案する。
リスク制御予測セットと,損失関数の期待値を制御することを目的とした共形リスク制御に関する既存の研究とは違い,本論文では,誤発見損失から一般損失への共形予測の拡張である任意のテスト対象の損失に着目した。
制御保証は有限事例におけるデータの交換可能性の仮定の下で証明され、数値気象予報アプリケーションのクラス変動損失と統計的後処理を伴う分類について実証的に検証し、ポイントワイズ分類およびポイントワイズ回帰問題として導入する。
すべての理論解析と実験結果から,損失制御手法の有効性を確認した。
関連論文リスト
- Self-Consistent Conformal Prediction [16.606421967131524]
textitSelf-Consistent Conformal Prediction for regressionを紹介する。
モデル予測に対して有効な条件付きで、校正点予測と互換性のある予測間隔を提供する。
論文 参考訳(メタデータ) (2024-02-11T21:12:21Z) - Conformal Prediction with Missing Values [19.18178194789968]
まず,共形予測の限界カバレッジ保証が,不一致分布のインプットデータに当てはまることを示す。
次に、インプットされたデータに基づいてトレーニングされた普遍的に一貫した量子レグレッションアルゴリズムが、ピンボールリスクに対してベイズ最適であることを示す。
論文 参考訳(メタデータ) (2023-06-05T09:28:03Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Loss-Controlling Calibration for Predictive Models [5.51361762392299]
交換可能なデータに対する損失制御予測を行うための予測モデルの校正のための学習フレームワークを提案する。
対照的に、損失制御手法によって構築された予測器は、設定された予測器に限らない。
提案手法は,選択的回帰および高影響気象予報問題に適用する。
論文 参考訳(メタデータ) (2023-01-11T09:44:55Z) - Quantile Risk Control: A Flexible Framework for Bounding the Probability
of High-Loss Predictions [11.842061466957686]
本稿では,予測器によって得られた損失分布の量子化の系を生成するフレキシブルな枠組みを提案する。
予測性能を定量化するための情報的手法としてQuantileを示し,そのフレームワークが様々なQuantileベースのメトリクスに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-12-27T22:08:29Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Unifying Lower Bounds on Prediction Dimension of Consistent Convex
Surrogates [12.751555473216683]
予測タスクを考えると、一貫した凸サーロゲート損失を設計できるかどうかを理解することは、機械学習研究の重要な領域です。
我々はこれらの設定をプロパティ・エリシテーションのツールを用いて統一し、予測次元の一般的な下限を与える。
我々の下限は、離散的な予測の場合の既存の結果を厳しくし、以前のキャリブレーションに基づく境界は、主にプロパティ・エリケーションによって回復可能であることを示す。
連続推定では, リスクと不確実性の指標を推定し, 未解決の問題に対処する。
論文 参考訳(メタデータ) (2021-02-16T15:29:05Z) - Distribution-Free, Risk-Controlling Prediction Sets [112.9186453405701]
ユーザ特定レベルにおける将来のテストポイントにおける期待損失を制御するブラックボックス予測器から設定値予測を生成する方法を示す。
提案手法は,予測セットのサイズをキャリブレーションするホールドアウトセットを用いて,任意のデータセットに対して明確な有限サンプル保証を提供する。
論文 参考訳(メタデータ) (2021-01-07T18:59:33Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。