論文の概要: Unifying Lower Bounds on Prediction Dimension of Consistent Convex
Surrogates
- arxiv url: http://arxiv.org/abs/2102.08218v1
- Date: Tue, 16 Feb 2021 15:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 20:37:41.356491
- Title: Unifying Lower Bounds on Prediction Dimension of Consistent Convex
Surrogates
- Title(参考訳): 連続凸サーロゲートの予測次元における下限の統一
- Authors: Jessie Finocchiaro and Rafael Frongillo and Bo Waggoner
- Abstract要約: 予測タスクを考えると、一貫した凸サーロゲート損失を設計できるかどうかを理解することは、機械学習研究の重要な領域です。
我々はこれらの設定をプロパティ・エリシテーションのツールを用いて統一し、予測次元の一般的な下限を与える。
我々の下限は、離散的な予測の場合の既存の結果を厳しくし、以前のキャリブレーションに基づく境界は、主にプロパティ・エリケーションによって回復可能であることを示す。
連続推定では, リスクと不確実性の指標を推定し, 未解決の問題に対処する。
- 参考スコア(独自算出の注目度): 12.751555473216683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a prediction task, understanding when one can and cannot design a
consistent convex surrogate loss, particularly a low-dimensional one, is an
important and active area of machine learning research. The prediction task may
be given as a target loss, as in classification and structured prediction, or
simply as a (conditional) statistic of the data, as in risk measure estimation.
These two scenarios typically involve different techniques for designing and
analyzing surrogate losses. We unify these settings using tools from property
elicitation, and give a general lower bound on prediction dimension. Our lower
bound tightens existing results in the case of discrete predictions, showing
that previous calibration-based bounds can largely be recovered via property
elicitation. For continuous estimation, our lower bound resolves on open
problem on estimating measures of risk and uncertainty.
- Abstract(参考訳): 予測タスクを考えると、一貫性のある凸サーロゲート損失、特に低次元の損失を設計できるかどうかを理解することは、機械学習研究において重要で活発な領域である。
予測タスクは、分類や構造化予測のように目標損失として、または単に、リスク測度の推定のように、データの(条件付き)統計として与えることができる。
これらの2つのシナリオは通常、代理損失を設計および分析するための異なる技術を含む。
我々はこれらの設定をプロパティ・エリシテーションのツールを用いて統一し、予測次元の一般的な下限を与える。
我々の下限は、離散的な予測の場合の既存の結果を厳しくし、以前のキャリブレーションに基づく境界は、主にプロパティ・エリケーションによって回復可能であることを示す。
連続推定では, リスクと不確実性の指標を推定し, 未解決の問題に対処する。
関連論文リスト
- Conformal Loss-Controlling Prediction [23.871264983891876]
コンフォーマル予測は、予測セットの予測カバレッジを制御する学習フレームワークである。
本研究では,損失関数の値を制御する必要がある状況に対して,共形予測を拡張した共形損失制御予測という学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-06T08:58:49Z) - Quantile Risk Control: A Flexible Framework for Bounding the Probability
of High-Loss Predictions [11.842061466957686]
本稿では,予測器によって得られた損失分布の量子化の系を生成するフレキシブルな枠組みを提案する。
予測性能を定量化するための情報的手法としてQuantileを示し,そのフレームワークが様々なQuantileベースのメトリクスに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-12-27T22:08:29Z) - Local Evaluation of Time Series Anomaly Detection Algorithms [9.717823994163277]
本稿では,弱い仮定下でのほとんどすべてのデータセットに対して,逆アルゴリズムが高精度に到達し,リコール可能であることを示す。
本稿では,精度/リコール指標に対する理論的基盤,頑健,パラメータフリー,解釈可能な拡張を提案する。
論文 参考訳(メタデータ) (2022-06-27T10:18:41Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
少数派集団のパフォーマンスは、カバー範囲を減らしながら低下する場合もある。
満足度基準を満たす特徴を構築できれば、そのような望ましくない行動は避けられることを示す。
論文 参考訳(メタデータ) (2021-10-28T19:05:12Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Distribution-Free, Risk-Controlling Prediction Sets [112.9186453405701]
ユーザ特定レベルにおける将来のテストポイントにおける期待損失を制御するブラックボックス予測器から設定値予測を生成する方法を示す。
提案手法は,予測セットのサイズをキャリブレーションするホールドアウトセットを用いて,任意のデータセットに対して明確な有限サンプル保証を提供する。
論文 参考訳(メタデータ) (2021-01-07T18:59:33Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z) - Probabilistic Deep Learning for Instance Segmentation [9.62543698736491]
提案手法は,提案不要なインスタンスセグメンテーションモデルにおけるモデル独立不確実性推定値を得るための汎用的な手法である。
本手法は,BBBC010 C. elegansデータセットを用いて評価し,競合性能を示す。
論文 参考訳(メタデータ) (2020-08-24T19:51:48Z) - Learning Output Embeddings in Structured Prediction [73.99064151691597]
構造化予測に対する強力で柔軟なアプローチは、予測される構造化対象を潜在的に無限次元の特徴空間に埋め込むことである。
原空間における予測は、前像問題の解法により計算される。
本研究では,新しい特徴空間に出力埋め込みと回帰関数の有限近似を共同で学習することを提案する。
論文 参考訳(メタデータ) (2020-07-29T09:32:53Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z) - A General Framework for Consistent Structured Prediction with Implicit
Loss Embeddings [113.15416137912399]
構造化予測のための理論的・アルゴリズム的な枠組みを提案し,解析する。
問題に対して適切な幾何を暗黙的に定義する、損失関数の大規模なクラスについて検討する。
出力空間を無限の濃度で扱うとき、推定子の適切な暗黙の定式化が重要であることが示される。
論文 参考訳(メタデータ) (2020-02-13T10:30:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。