Discrete holography in dual-unitary circuits
- URL: http://arxiv.org/abs/2301.02825v1
- Date: Sat, 7 Jan 2023 10:58:58 GMT
- Title: Discrete holography in dual-unitary circuits
- Authors: Lluis Masanes
- Abstract summary: We introduce a family of dual-unitary circuits in 1+1 dimensions.
These circuits are quantum cellular automata which are invariant under the joint action of Lorentz and scale transformations.
We observe that the dynamics of spaces with two or more particles differs from that of zero or one, suggesting the presence of black holes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a family of dual-unitary circuits in 1+1 dimensions which
constitute a discrete analog of conformal field theories. These circuits are
quantum cellular automata which are invariant under the joint action of Lorentz
and scale transformations. Dual unitaries are four-legged tensors which satisfy
the unitarity condition across the time as well as the space direction, a
property that makes the model mathematically tractable. Using dual unitaries
too, we construct tensor-network states for our 1+1 model, which are
interpreted as spatial slices of curved 2+1 discrete geometries, where the
metric distance is defined by the entanglement structure of the state,
following Ryu-Takayanagi's prescription. The dynamics of the circuit induces a
natural dynamics on these geometries, which we study for flat and anti-de
Sitter spaces, and in the presence or absence of matter. We observe that the
dynamics of spaces with two or more particles differs from that of zero or one,
suggesting the presence of black holes. But this contrasts with the fact that
the family of models appears to be non-chaotic.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Fundamental charges for dual-unitary circuits [0.0]
Dual-unitary quantum circuits have recently attracted attention as an analytically tractable model of many-body quantum dynamics.
We show that for 1+1D dual-unitary circuits the set of width-$w$ conserved densities is in one-to-one correspondence with the set of width-$w$ solitons.
We also establish a link between fermionic models and dual-unitary circuits, advancing our understanding of what kinds of physics can be explored in this framework.
arXiv Detail & Related papers (2023-12-21T18:59:01Z) - Topological dualities via tensor networks [0.0]
Ground state of the toric code, that of the two-dimensional class D superconductor, and the partition sum of the two-dimensional Ising model are dual to each other.
Connecting fermionic and bosonic systems, the duality construction is intrinsically non-local.
We propose a unified approach to this duality, whose main protagonist is a tensor network (TN) assuming the role of an intermediate translator.
arXiv Detail & Related papers (2023-09-22T18:00:17Z) - Dual symplectic classical circuits: An exactly solvable model of
many-body chaos [0.0]
We prove that two-point dynamical correlation functions are non-vanishing only along the edges of the light cones.
We test our theory in a specific family of dual-symplectic circuits, describing the dynamics of a classical Floquet spin chain.
arXiv Detail & Related papers (2023-07-04T15:48:41Z) - Penrose dodecahedron, Witting configuration and quantum entanglement [55.2480439325792]
A model with two entangled spin-3/2 particles based on geometry of dodecahedron was suggested by Roger Penrose.
The model was later reformulated using so-called Witting configuration with 40 rays in 4D Hilbert space.
Two entangled systems with quantum states described by Witting configurations are discussed in presented work.
arXiv Detail & Related papers (2022-08-29T14:46:44Z) - Circuits of space and time quantum channels [0.0]
We show that noise unbiased around the dual-unitary family leads to exactly solvable models, even if dual-unitarity is strongly violated.
We prove that any channel unital in both space and time directions can be written as an affine combination of a particular class of dual-unitary gates.
arXiv Detail & Related papers (2022-06-24T08:35:17Z) - Construction and the ergodicity properties of dual unitary quantum
circuits [0.0]
We consider one dimensional quantum circuits of the type, where the fundamental quantum gate is dual unitary.
We review various existing constructions for dual unitary gates and we supplement them with new ideas in a number of cases.
A brief mathematical treatment of the recurrence time in such models is presented in the Appendix by Roland Bacher and Denis Serre.
arXiv Detail & Related papers (2022-01-19T18:09:34Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.