Network Slicing via Transfer Learning aided Distributed Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2301.03262v2
- Date: Fri, 23 Jun 2023 15:03:25 GMT
- Title: Network Slicing via Transfer Learning aided Distributed Deep
Reinforcement Learning
- Authors: Tianlun Hu, Qi Liao, Qiang Liu and Georg Carle
- Abstract summary: We propose a novel transfer learning (TL) aided multi-agent deep reinforcement learning (MADRL) approach with inter-agent similarity analysis for inter-cell inter-slice resource partitioning.
We show that our approach outperforms the state-of-the-art solutions in terms of performance, convergence speed and sample efficiency.
- Score: 7.126310378721161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has been increasingly employed to handle
the dynamic and complex resource management in network slicing. The deployment
of DRL policies in real networks, however, is complicated by heterogeneous cell
conditions. In this paper, we propose a novel transfer learning (TL) aided
multi-agent deep reinforcement learning (MADRL) approach with inter-agent
similarity analysis for inter-cell inter-slice resource partitioning. First, we
design a coordinated MADRL method with information sharing to intelligently
partition resource to slices and manage inter-cell interference. Second, we
propose an integrated TL method to transfer the learned DRL policies among
different local agents for accelerating the policy deployment. The method is
composed of a new domain and task similarity measurement approach and a new
knowledge transfer approach, which resolves the problem of from whom to
transfer and how to transfer. We evaluated the proposed solution with extensive
simulations in a system-level simulator and show that our approach outperforms
the state-of-the-art solutions in terms of performance, convergence speed and
sample efficiency. Moreover, by applying TL, we achieve an additional gain over
27% higher than the coordinate MADRL approach without TL.
Related papers
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph
Reinforcement Learning [42.175067773481416]
We design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation.
Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network.
A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning.
arXiv Detail & Related papers (2023-11-07T06:43:15Z) - Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
We propose and design a hybrid TL-aided approach to provide safe and accelerated convergence in DRL-based O-RAN slicing.
The proposed hybrid approach shows at least: 7.7% and 20.7% improvements in the average initial reward value and the percentage of converged scenarios.
arXiv Detail & Related papers (2023-09-13T18:58:34Z) - Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning [6.523367518762879]
Network slicing enables operators to efficiently support diverse applications on a common physical infrastructure.
The ever-increasing densification of network deployment leads to complex and non-trivial inter-cell interference.
We develop a DIRP algorithm with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition in individual cells.
arXiv Detail & Related papers (2023-06-20T14:14:59Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Enforcing the consensus between Trajectory Optimization and Policy
Learning for precise robot control [75.28441662678394]
Reinforcement learning (RL) and trajectory optimization (TO) present strong complementary advantages.
We propose several improvements on top of these approaches to learn global control policies quicker.
arXiv Detail & Related papers (2022-09-19T13:32:09Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Efficient Deep Reinforcement Learning via Adaptive Policy Transfer [50.51637231309424]
Policy Transfer Framework (PTF) is proposed to accelerate Reinforcement Learning (RL)
Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it.
Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods.
arXiv Detail & Related papers (2020-02-19T07:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.