Tuning Path Tracking Controllers for Autonomous Cars Using Reinforcement
Learning
- URL: http://arxiv.org/abs/2301.03363v1
- Date: Mon, 9 Jan 2023 14:17:12 GMT
- Title: Tuning Path Tracking Controllers for Autonomous Cars Using Reinforcement
Learning
- Authors: Ana Carrasco, Jo\~ao Sequeira
- Abstract summary: This paper proposes an adaptable path tracking control system based on Reinforcement Learning (RL) for autonomous cars.
The tuning of the tracker uses an educated Q-Learning algorithm to minimize the lateral and steering trajectory errors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes an adaptable path tracking control system based on
Reinforcement Learning (RL) for autonomous cars. A four-parameter controller
shapes the behavior of the vehicle to navigate on lane changes and roundabouts.
The tuning of the tracker uses an educated Q-Learning algorithm to minimize the
lateral and steering trajectory errors. The CARLA simulation environment was
used both for training and testing. The results show the vehicle is able to
adapt its behavior to the different types of reference trajectories, navigating
safely with low tracking errors. The use of a ROS bridge between the CARLA and
the tracker results (i) in a realistic system, and (ii) simplifies the
replacement of the CARLA by a real vehicle. An argument on the dependability of
the overall architecture based on stability results of non-smooth systems is
presented at the end of the paper.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
We present a novel formulation to model the effects of a locked differential on the lateral dynamics of an autonomous open-wheel racecar.
We include a micro-steps discretization approach to accurately linearize the dynamics and produce a prediction suitable for real-time implementation.
arXiv Detail & Related papers (2023-12-22T16:29:55Z) - Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
This paper addresses the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars.
We propose a partial end-to-end algorithm that decouples the planning and control tasks.
By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.
arXiv Detail & Related papers (2023-12-11T14:27:10Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
This paper presents a multi-layer motion planning and control architecture for autonomous racing.
The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s2$.
arXiv Detail & Related papers (2022-07-22T15:16:54Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - CARLA Real Traffic Scenarios -- novel training ground and benchmark for
autonomous driving [8.287331387095545]
This work introduces interactive traffic scenarios in the CARLA simulator, which are based on real-world traffic.
We concentrate on tactical tasks lasting several seconds, which are especially challenging for current control methods.
The CARLA Real Traffic Scenarios (CRTS) is intended to be a training and testing ground for autonomous driving systems.
arXiv Detail & Related papers (2020-12-16T13:20:39Z) - End-to-End Vision-Based Adaptive Cruise Control (ACC) Using Deep
Reinforcement Learning [12.100265694989627]
This paper presented a deep reinforcement learning method named Double Deep Q-networks to design an end-to-end vision-based adaptive cruise control (ACC) system.
Well-designed reward functions associated with the following distance and throttle/brake force were implemented in the reinforcement learning model.
The proposed system can be well adaptive to different speed trajectories of the preceding vehicle and operated in real-time.
arXiv Detail & Related papers (2020-01-24T20:02:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.