論文の概要: Differentiable Simulations for Enhanced Sampling of Rare Events
- arxiv url: http://arxiv.org/abs/2301.03480v1
- Date: Mon, 9 Jan 2023 16:12:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 18:29:03.766491
- Title: Differentiable Simulations for Enhanced Sampling of Rare Events
- Title(参考訳): 希少事象のサンプリング強化のための微分可能シミュレーション
- Authors: Martin \v{S}\'ipka and Johannes C. B. Dietschreit and Rafael
G\'omez-Bombarelli
- Abstract要約: そこで本研究では, 化学反応性イベントの高感度サンプリングのための微分可能なシミュレーション手法を開発した。
反応経路の発見とポテンシャル計算の偏りを1つのエンドツーエンド問題にマージし、経路積分最適化により解決する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a novel approach to enhanced sampling of chemically reactive
events using differentiable simulations. We merge the reaction path discovery
and biasing potential computation into one end-to-end problem and solve it by
path-integral optimization. The techniques developed contribute directly to the
understanding and usability of differentiable simulations as we introduce new
approaches and prove the stability properties of our method.
- Abstract(参考訳): 我々は, 微分可能なシミュレーションを用いて, 化学的に反応した事象をサンプリングする新しい手法を開発した。
反応経路の発見とポテンシャル計算の偏りを1つのエンドツーエンド問題にマージし、経路積分最適化により解決する。
開発した手法は,新しい手法を導入し,本手法の安定性を証明し,微分可能シミュレーションの理解とユーザビリティに直接貢献する。
関連論文リスト
- Variational Autoencoders for Efficient Simulation-Based Inference [0.3495246564946556]
本稿では、確率自由なシミュレーションに基づく推論のための変分推論フレームワークに基づく生成的モデリング手法を提案する。
我々は,これらのモデルの有効性を,フローベースアプローチに匹敵する結果が得られるように,確立されたベンチマーク問題に対して示す。
論文 参考訳(メタデータ) (2024-11-21T12:24:13Z) - Mitigating distribution shift in machine learning-augmented hybrid
simulation [15.37429773698171]
本稿では,機械学習によるハイブリッドシミュレーションにおいて一般的に発生する分布シフトの問題について検討する。
本稿では,分布シフトを制御するために,接空間正規化推定器に基づく簡単な手法を提案する。
いずれの場合も,提案手法によるシミュレーション精度の向上が顕著である。
論文 参考訳(メタデータ) (2024-01-17T15:05:39Z) - Entropic Matching for Expectation Propagation of Markov Jump Processes [38.60042579423602]
本稿では,エントロピックマッチングフレームワークに基づく新たなトラクタブル推論手法を提案する。
簡単な近似分布の族に対して閉形式の結果を提供することにより,本手法の有効性を実証する。
我々は、近似予測法を用いて、基礎となるパラメータの点推定のための式を導出する。
論文 参考訳(メタデータ) (2023-09-27T12:07:21Z) - Ensemble Differential Evolution with Simulation-Based Hybridization and
Self-Adaptation for Inventory Management Under Uncertainty [0.0]
本研究は,インベントリーマネジメント(IM)のためのシミュラオンベースハイブリッド化と自己適応(EDESH-SA)アプローチを用いたアンサンブル微分進化法を提案する。
論文 参考訳(メタデータ) (2023-09-22T13:25:58Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - A Discrete Variational Derivation of Accelerated Methods in Optimization [68.8204255655161]
最適化のための異なる手法を導出できる変分法を導入する。
我々は1対1の対応において最適化手法の2つのファミリを導出する。
自律システムのシンプレクティシティの保存は、ここでは繊維のみに行われる。
論文 参考訳(メタデータ) (2021-06-04T20:21:53Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。