Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control
- URL: http://arxiv.org/abs/2301.03565v1
- Date: Mon, 9 Jan 2023 18:35:32 GMT
- Title: Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge
with Data-Driven Control
- Authors: Adam J. Thorpe, Cyrus Neary, Franck Djeumou, Meeko M. K. Oishi, Ufuk
Topcu
- Abstract summary: We present a method to incorporate priori knowledge into data-driven control algorithms using kernel embeddings.
Our proposed approach incorporates prior knowledge of the system dynamics as a bias term in the kernel learning problem.
We demonstrate the improved sample efficiency and out-of-sample generalization of our approach over a purely data-driven baseline.
- Score: 22.549914935697366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven control algorithms use observations of system dynamics to
construct an implicit model for the purpose of control. However, in practice,
data-driven techniques often require excessive sample sizes, which may be
infeasible in real-world scenarios where only limited observations of the
system are available. Furthermore, purely data-driven methods often neglect
useful a priori knowledge, such as approximate models of the system dynamics.
We present a method to incorporate such prior knowledge into data-driven
control algorithms using kernel embeddings, a nonparametric machine learning
technique based in the theory of reproducing kernel Hilbert spaces. Our
proposed approach incorporates prior knowledge of the system dynamics as a bias
term in the kernel learning problem. We formulate the biased learning problem
as a least-squares problem with a regularization term that is informed by the
dynamics, that has an efficiently computable, closed-form solution. Through
numerical experiments, we empirically demonstrate the improved sample
efficiency and out-of-sample generalization of our approach over a purely
data-driven baseline. We demonstrate an application of our method to control
through a target tracking problem with nonholonomic dynamics, and on
spring-mass-damper and F-16 aircraft state prediction tasks.
Related papers
- Active Learning for Control-Oriented Identification of Nonlinear Systems [26.231260751633307]
We present the first finite sample analysis of an active learning algorithm suitable for a general class of nonlinear dynamics.
In certain settings, the excess control cost of our algorithm achieves the optimal rate, up to logarithmic factors.
We validate our approach in simulation, showcasing the advantage of active, control-oriented exploration for controlling nonlinear systems.
arXiv Detail & Related papers (2024-04-13T15:40:39Z) - Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States [52.56827348431552]
gradient descent frequently exhibits an implicit bias that leads to excellent performance on unseen data.
This paper theoretically studies the implicit bias of policy gradient in terms of extrapolation to unseen initial states.
arXiv Detail & Related papers (2024-02-12T18:41:31Z) - A Deep Learning Technique to Control the Non-linear Dynamics of a
Gravitational-wave Interferometer [0.0]
We developed a deep learning technique that successfully solves a non-linear dynamic control problem.
We applied this technique to a crucial non-linear control problem that arises in the operation of the LIGO system.
We also developed a computationally efficient model that can run in real time at high sampling rate on a single modern CPU core.
arXiv Detail & Related papers (2023-02-15T19:47:56Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
This study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles.
We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments.
We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach.
arXiv Detail & Related papers (2021-10-22T15:43:03Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Data Assimilation Networks [1.5545257664210517]
Data assimilation aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations.
We propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms.
Our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.
arXiv Detail & Related papers (2020-10-19T17:35:36Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
We present a universal learning framework for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems.
arXiv Detail & Related papers (2020-10-07T13:50:13Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.