論文の概要: Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling
- arxiv url: http://arxiv.org/abs/2301.03729v2
- Date: Wed, 11 Jan 2023 17:54:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 11:51:07.640851
- Title: Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling
- Title(参考訳): 材料特性モデリングのための機械駆動力場の伝達性評価
- Authors: Shaswat Mohanty, Sanghyuk Yoo, Keonwook Kang, Wei Cai
- Abstract要約: 本稿では,機械学習力場の伝達性を評価するため,より包括的なベンチマークテストを提案する。
我々は、OpenMMパッケージと結合したグラフニューラルネットワーク(GNN)ベースの力場を用いて、ArgonのMDシミュレーションを実行する。
実験結果から, モデルが固体相の挙動を正確に把握できるのは, 固体相の構成がトレーニングデータセットに含まれる場合のみであることがわかった。
- 参考スコア(独自算出の注目度): 2.494740426749958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learned force fields have generated significant interest in recent
years as a tool for molecular dynamics (MD) simulations, with the aim of
developing accurate and efficient models that can replace classical interatomic
potentials. However, before these models can be confidently applied to
materials simulations, they must be thoroughly tested and validated. The
existing tests on the radial distribution function and mean-squared
displacements are insufficient in assessing the transferability of these
models. Here we present a more comprehensive set of benchmarking tests for
evaluating the transferability of machine-learned force fields. We use a graph
neural network (GNN)-based force field coupled with the OpenMM package to carry
out MD simulations for Argon as a test case. Our tests include computational
X-ray photon correlation spectroscopy (XPCS) signals, which capture the density
fluctuation at various length scales in the liquid phase, as well as phonon
density-of-state in the solid phase and the liquid-solid phase transition
behavior. Our results show that the model can accurately capture the behavior
of the solid phase only when the configurations from the solid phase are
included in the training dataset. This underscores the importance of
appropriately selecting the training data set when developing machine-learned
force fields. The tests presented in this work provide a necessary foundation
for the development and application of machine-learned force fields for
materials simulations.
- Abstract(参考訳): 近年、機械学習力場は分子動力学(MD)シミュレーションのツールとして大きな関心を集めており、従来の原子間ポテンシャルを置き換える正確で効率的なモデルの開発を目指している。
しかし、これらのモデルを材料シミュレーションに確実に適用する前には、徹底的に検証し、検証する必要がある。
放射分布関数と平均2乗変位に関する既存の試験は,これらのモデルの伝達性を評価するには不十分である。
ここでは、機械学習力場の伝達性を評価するためのより包括的なベンチマークテストについて述べる。
我々は、OpenMMパッケージと結合したグラフニューラルネットワーク(GNN)ベースの力場を用いて、ArgonのMDシミュレーションをテストケースとして実施する。
実験では, 液体相における様々な長さスケールでの密度変動を捉えるX線光子相関分光法 (XPCS) と, 固体相におけるフォノン密度と液-固体相転移挙動について検討した。
実験結果から, モデルが固体相の挙動を正確に把握できるのは, 固体相からの構成がトレーニングデータセットに含まれる場合のみであることがわかった。
これは、機械主導の力場を開発する際にトレーニングデータセットを適切に選択することの重要性を強調する。
本研究で示された試験は、材料シミュレーションのための機械学習力場の開発と応用に必要な基礎を提供する。
関連論文リスト
- A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Accurate machine learning force fields via experimental and simulation
data fusion [0.0]
機械学習(ML)ベースの力場は、量子レベルの精度で古典的原子間ポテンシャルのスケールにまたがる能力のために、ますます関心が高まりつつある。
ここでは、密度汎関数理論(DFT)計算と実験的に測定された力学特性と格子パラメータの両方を活用して、チタンのMLポテンシャルを訓練する。
融合したデータ学習戦略は、全ての対象目標を同時に満たすことができ、結果として、単一のソースデータで訓練されたモデルと比較して高い精度の分子モデルが得られることを実証する。
論文 参考訳(メタデータ) (2023-08-17T18:22:19Z) - Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations [5.138982355658199]
分子動力学(MD)シミュレーション技術は様々な自然科学応用に広く用いられている。
我々は、最先端(SOTA)ML FFモデルの集合をベンチマークし、特に、一般的にベンチマークされる力の精度が、関連するシミュレーション指標とうまく一致していないことを示す。
論文 参考訳(メタデータ) (2022-10-13T17:59:03Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
機械学習(ML)ベースのポテンシャルは、量子力学(QM)計算の忠実なエミュレーションを、計算コストを大幅に削減することを目的としている。
アクティブラーニング(AL)の原理を用いたデータセット構築のための高度に自動化されたアプローチを提案する。
アルミニウム(ANI-Al)のMLポテンシャル構築によるこのアプローチの実証
転写性を示すために、1.3M原子衝撃シミュレーションを行い、非平衡力学から採取した局所原子環境上でのDFT計算とANI-Al予測がよく一致することを示す。
論文 参考訳(メタデータ) (2020-03-10T19:06:32Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
基礎となる物理を一貫して組み込む新しい学習フレームワークを提案する。
原子間力場の形で利用可能な物理学を完全に組み込んだ逆クルバック・リーブラー分岐に基づく新しい目的を提案する。
本研究は,バイモーダルポテンシャルエネルギー関数とアラニンジペプチドに対するCVの予測能力および物理的意義の観点からアルゴリズムの進歩を実証する。
論文 参考訳(メタデータ) (2020-02-24T10:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。