論文の概要: Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps
- arxiv url: http://arxiv.org/abs/2301.03931v1
- Date: Tue, 10 Jan 2023 12:18:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 17:46:44.564933
- Title: Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps
- Title(参考訳): min-max optimization made simple: 縮約写像による近点法近似
- Authors: Volkan Cevher, Georgios Piliouras, Ryann Sim, Stratis Skoulakis
- Abstract要約: 本稿では,凸/凹凸 min-max 問題に対して,ほぼ最適収束率を許容する一階法を提案する。
我々の研究は、近点法の更新規則を精度良く近似できるという事実に基づいている。
- 参考スコア(独自算出の注目度): 77.8999425439444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a first-order method that admits near-optimal
convergence rates for convex/concave min-max problems while requiring a simple
and intuitive analysis. Similarly to the seminal work of Nemirovski and the
recent approach of Piliouras et al. in normal form games, our work is based on
the fact that the update rule of the Proximal Point method (PP) can be
approximated up to accuracy $\epsilon$ with only $\mathcal{O}(\log 1/\epsilon)$
additional gradient-calls through the iterations of a contraction map. Then
combining the analysis of (PP) method with an error-propagation analysis we
establish that the resulting first order method, called \textit{Clairvoyant
Extra Gradient}, admits near-optimal time-average convergence for general
domains and last-iterate convergence in the unconstrained case.
- Abstract(参考訳): 本稿では,単純で直感的な解析を必要としながら,凸・凹ミンマックス問題に対して近似収束率を許容する一階法を提案する。
ネミロフスキーのセミナルな研究や、通常の形式ゲームにおけるピリオラスらの最近のアプローチと同様に、我々の研究は、近点法(PP)の更新規則が、縮約写像の反復を通して追加の勾配呼び出しをわずか$\mathcal{O}(\log 1/\epsilon)$で、精度$\epsilon$に近似できるという事実に基づいている。
次に, (pp) 法の解析と誤差伝播解析を組み合わせることで, 生成する一階法である \textit{clairvoyant extra gradient} が一般領域に対する近似時間平均収束と無拘束の場合のラストイテレート収束を許容することを示す。
関連論文リスト
- A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
我々は,非制約のmin-max最適化問題のグローバルなサドル点を求めるために,不正確な正規化ニュートン型手法を提案し,解析する。
提案手法は有界集合内に留まるイテレートを生成し、その反復は制限関数の項で$O(epsilon-2/3)$内の$epsilon$-saddle点に収束することを示す。
論文 参考訳(メタデータ) (2022-10-23T21:24:37Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - Accelerated first-order methods for convex optimization with locally
Lipschitz continuous gradient [0.0]
まず,Lipschitz連続勾配 (LLCG) を用いた非拘束凸最適化について検討し,それを解決するための加速近位勾配 (APG) 法を提案する。
提案手法は検証可能な終端基準を備えており、演算複雑性は$cal O(varepsilon-1/2log varepsilon-1)$である。
提案手法の性能を実証するために,予備的な数値計算結果を示す。
論文 参考訳(メタデータ) (2022-06-02T10:34:26Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
収束$tildeO(t-1/4)$とMoreautildeO(vareps-4)$がスムーズな非最適化のために最悪の場合の複雑性を示す。
適応的なステップサイズと最適収束度を持つ投影勾配法に基づく従属データに対する最初のオンライン非負行列分解アルゴリズムを得る。
論文 参考訳(メタデータ) (2022-03-29T17:59:10Z) - Generalized Optimistic Methods for Convex-Concave Saddle Point Problems [24.5327016306566]
この楽観的な手法は凸凹点問題の解法として人気が高まっている。
我々は,係数を知らずにステップサイズを選択するバックトラックライン探索手法を開発した。
論文 参考訳(メタデータ) (2022-02-19T20:31:05Z) - Finite-Sample Analysis for Two Time-scale Non-linear TDC with General
Smooth Function Approximation [27.149240954363496]
我々は,一般のオフ・ポリシー設定にバインドされた有限サンプル誤差を明示的に特徴付ける新しい手法を開発した。
本手法は,一般的なスムーズな関数近似を用いた広範囲なT型学習アルゴリズムに適用できる。
論文 参考訳(メタデータ) (2021-04-07T00:34:11Z) - A Unified Analysis of First-Order Methods for Smooth Games via Integral
Quadratic Constraints [10.578409461429626]
本研究では、滑らかで強可変なゲームやイテレーションのための一階法に積分二次的制約理論を適用する。
我々は、負の運動量法(NM)に対して、既知の下界と一致する複雑性$mathcalO(kappa1.5)$で、初めて大域収束率を与える。
一段階のメモリを持つアルゴリズムでは,バッチ毎に1回だけ勾配を問合せすれば,高速化は不可能であることを示す。
論文 参考訳(メタデータ) (2020-09-23T20:02:00Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Gradient-Free Methods for Saddle-Point Problem [125.99533416395765]
我々はGasnikov et al., 2017のアプローチを一般化し、不正確な勾配のないオラクルで(確率的な)凸最適化問題を解けるようにした。
我々のアプローチは、$fracnlog n$ の要求するオラクル呼び出しの回数を削減します。
論文の後半では、そのような仮定ができない場合を分析し、この問題を解決する方法の近代化方法に関する一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-12T16:44:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。