論文の概要: AdvBiom: Adversarial Attacks on Biometric Matchers
- arxiv url: http://arxiv.org/abs/2301.03966v1
- Date: Tue, 10 Jan 2023 14:01:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 16:54:42.659658
- Title: AdvBiom: Adversarial Attacks on Biometric Matchers
- Title(参考訳): AdvBiom: バイオメトリックマッチの敵攻撃
- Authors: Debayan Deb, Vishesh Mistry, Rahul Parthe
- Abstract要約: 顔サンプルに対する人間の知覚できない小さな変化は、最も普及している顔認識システムを回避することができることを示す。
本稿では, 指紋認識システムなど, バイオメトリック・モダリティをトレーニングし, 拡張する方法について述べる。
- 参考スコア(独自算出の注目度): 5.070542698701158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of deep learning models, face recognition systems have
achieved impressive recognition rates. The workhorses behind this success are
Convolutional Neural Networks (CNNs) and the availability of large training
datasets. However, we show that small human-imperceptible changes to face
samples can evade most prevailing face recognition systems. Even more alarming
is the fact that the same generator can be extended to other traits in the
future. In this work, we present how such a generator can be trained and also
extended to other biometric modalities, such as fingerprint recognition
systems.
- Abstract(参考訳): ディープラーニングモデルの出現により、顔認識システムは印象的な認識率を達成した。
この成功の背景にあるのは、畳み込みニューラルネットワーク(CNN)と大規模なトレーニングデータセットの可用性だ。
しかし,顔のサンプルに対する人間の影響を受けやすい小さな変化は,最も普及している顔認識システムから回避できることを示す。
さらに心配なのは、同じジェネレータが将来的に他の特性にも拡張可能であることだ。
本研究では,このような生成器を訓練し,指紋認識システムなど他の生体情報にも拡張する方法について述べる。
関連論文リスト
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Unrecognizable Yet Identifiable: Image Distortion with Preserved Embeddings [22.338328674283062]
本稿では,ニューラルネットワークモデルによる顔画像の識別性を保ちながら,目に対して認識不能な顔画像を描画する,革新的な画像変換手法を提案する。
提案手法は、様々な人工知能アプリケーションにおいて、視覚データを歪曲し、派生した特徴を近接に保つために使用することができる。
同一の認識精度を維持しつつ、画像内容が70%以上変化する歪みを構築することができることを示す。
論文 参考訳(メタデータ) (2024-01-26T18:20:53Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - Analysis of Recent Trends in Face Recognition Systems [0.0]
クラス間の類似性とクラス内変異により、顔認識システムは、それぞれ偽マッチングと偽非マッチエラーを生成する。
近年の研究では、抽出した特徴の堅牢性向上と、認識精度を高めるための前処理アルゴリズムに焦点が当てられている。
論文 参考訳(メタデータ) (2023-04-23T18:55:45Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
分類の自動化と類似性検索は、医師が可能な限り早期に遺伝状態の診断を行うための意思決定を支援する。
従来の研究は分類問題としてこの問題に対処し、深層学習法を用いてきた。
本研究では,健常人の大規模なコーパスで訓練した顔認識モデルを用いて,顔の表情認識に移行した。
論文 参考訳(メタデータ) (2022-10-23T11:52:57Z) - Generating Master Faces for Dictionary Attacks with a Network-Assisted
Latent Space Evolution [68.8204255655161]
マスターフェイス(英: master face)とは、人口の大部分が顔に基づくアイデンティティ認証を通した顔画像である。
そこで我々は,StyleGANフェイスジェネレータの潜伏埋め込み空間における進化的アルゴリズムを用いて,これらの顔の最適化を行う。
論文 参考訳(メタデータ) (2021-08-01T12:55:23Z) - FACESEC: A Fine-grained Robustness Evaluation Framework for Face
Recognition Systems [49.577302852655144]
FACESECは、顔認識システムのきめ細かい堅牢性評価のためのフレームワークです。
5つの顔認識システムをクローズド設定とオープン設定の両方で検討します。
ニューラルネットワークの正確な知識は、ブラックボックス攻撃におけるトレーニングデータの知識よりもはるかに重要である。
論文 参考訳(メタデータ) (2021-04-08T23:00:25Z) - Facial Masks and Soft-Biometrics: Leveraging Face Recognition CNNs for
Age and Gender Prediction on Mobile Ocular Images [53.913598771836924]
スマートフォンで撮影した自撮り眼画像を使って年齢や性別を推定します。
ImageNet Challengeの文脈で提案された2つの既存の軽量CNNを適応させる。
一部のネットワークは顔認識のためにさらにトレーニングされており、非常に大規模なトレーニングデータベースが利用可能です。
論文 参考訳(メタデータ) (2021-03-31T01:48:29Z) - AuthNet: A Deep Learning based Authentication Mechanism using Temporal
Facial Feature Movements [0.0]
パスワードを発話しながら、顔認識と、その顔のユニークな動きの両方を利用する認証機構を提案する。
提案したモデルは,任意の言語でパスワードを設定することができるため,言語障壁によって阻害されない。
論文 参考訳(メタデータ) (2020-12-04T10:46:12Z) - Generating Master Faces for Use in Performing Wolf Attacks on Face
Recognition Systems [40.59670229362299]
顔認証はますます主流になり、攻撃者にとって主要なターゲットとなっている。
これまでの研究では、指紋認証と指紋認証はオオカミの攻撃の影響を受けやすいことが示されている。
我々は最先端の顔生成器であるStyleGANを用いて高品質な顔を生成する。
論文 参考訳(メタデータ) (2020-06-15T12:59:49Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
最新のオープンソースの顔認識システムであるArcFaceを、100万枚以上の散らばった画像を用いた大規模な顔識別実験で監査する。
モデルのトレーニングデータには79.71%、存在しない人には75.73%のランク1顔認証精度がある。
論文 参考訳(メタデータ) (2020-01-09T15:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。