Symmetry-Preserving Quadratic Lindbladian and Dissipation Driven Topological Transitions in Gaussian States
- URL: http://arxiv.org/abs/2301.04345v2
- Date: Thu, 20 Jun 2024 12:01:37 GMT
- Title: Symmetry-Preserving Quadratic Lindbladian and Dissipation Driven Topological Transitions in Gaussian States
- Authors: Liang Mao, Fan Yang, Hui Zhai,
- Abstract summary: We characterize the density matrix topology by the topological invariant of its modular Hamiltonian.
We present two examples of dissipation-driven topological transitions where the modular Hamiltonian lies in the AIII class with U(1) symmetry and the DIII class without U(1) symmetry.
- Score: 5.072946612096282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamical evolution of an open quantum system can be governed by the Lindblad equation of the density matrix. In this paper, we propose to characterize the density matrix topology by the topological invariant of its modular Hamiltonian. Since the topological classification of such Hamiltonians depends on their symmetry classes, a primary issue we address is determining the requirement for the Lindbladian operators, under which the modular Hamiltonian can preserve its symmetry class during the dynamical evolution. We solve this problem for the fermionic Gaussian state and for the modular Hamiltonian being a quadratic operator of a set of fermionic operators. When these conditions are satisfied, along with a nontrivial topological classification of the symmetry class of the modular Hamiltonian, a topological transition can occur as time evolves. We present two examples of dissipation-driven topological transitions where the modular Hamiltonian lies in the AIII class with U(1) symmetry and the DIII class without U(1) symmetry. By a finite size scaling, we show that this density matrix topology transition occurs at a finite time. We also present the physical signature of this transition.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - A Non-Invertible Symmetry-Resolved Affleck-Ludwig-Cardy Formula and Entanglement Entropy from the Boundary Tube Algebra [0.0]
We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1d conformal field theory.
We use this to determine the universal leading and sub-leading contributions to the non-invertible symmetry-resolved entanglement entropy of a single interval.
arXiv Detail & Related papers (2024-09-04T15:25:05Z) - Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - Probing Topology of Gaussian Mixed States by the Full Counting
Statistics [5.072946612096282]
Recently, a trend in topological physics is extending topological classification to mixed state.
We focus on Gaussian mixed states where the modular Hamiltonians of the density matrix are quadratic free fermion models.
The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.
arXiv Detail & Related papers (2024-02-25T02:55:56Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Topological study of a Bogoliubov-de Gennes system of pseudo spin-$1/2$
bosons with conserved magnetization in a honeycomb lattice [0.0]
We consider a non-Hermitian Hamiltonian with pseudo-Hermiticity for a system of bosons in a honeycomb lattice.
Such a system is capable of acting as a topological amplifier, under time-reversal symmetry.
We construct a convenient analytical description for the edge modes of the Haldane model in semi-infinite planes.
arXiv Detail & Related papers (2021-10-07T02:00:12Z) - Investigating a (3+1)D Topological $\theta$-Term in the Hamiltonian
Formulation of Lattice Gauge Theories for Quantum and Classical Simulations [0.0]
We derive the (3+1)D topological $theta$-term for Abelian and non-Abelian lattice gauge theories.
We study numerically the zero-temperature phase structure of a (3+1)D U(1) lattice gauge theory.
arXiv Detail & Related papers (2021-05-13T01:10:42Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Real Edge Modes in a Floquet-modulated $\mathcal{PT}$-symmetric SSH
model [0.0]
Non-Hermitian Hamiltonians feature complex energies and a corresponding non-orthonormal eigenbasis.
We show the details of this process by using a simple two-step periodic modulation.
arXiv Detail & Related papers (2020-06-30T15:19:50Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.