論文の概要: Anomalies, Representations, and Self-Supervision
- arxiv url: http://arxiv.org/abs/2301.04660v2
- Date: Wed, 7 Aug 2024 15:07:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 18:42:56.207475
- Title: Anomalies, Representations, and Self-Supervision
- Title(参考訳): 異常・表現・自己監督
- Authors: Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn,
- Abstract要約: 本研究では,CMS ADC 2021のイベントレベル異常データを用いて,コントラスト学習を用いた自己教師付き密度ベース異常検出法を開発した。
AnomalyCLRのテクニックはデータ駆動であり、背景データの拡張を使用して、モデルに依存しない方法で非標準モデルイベントを模倣する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a self-supervised method for density-based anomaly detection using contrastive learning, and test it using event-level anomaly data from CMS ADC2021. The AnomalyCLR technique is data-driven and uses augmentations of the background data to mimic non-Standard-Model events in a model-agnostic way. It uses a permutation-invariant Transformer Encoder architecture to map the objects measured in a collider event to the representation space, where the data augmentations define a representation space which is sensitive to potential anomalous features. An AutoEncoder trained on background representations then computes anomaly scores for a variety of signals in the representation space. With AnomalyCLR we find significant improvements on performance metrics for all signals when compared to the raw data baseline.
- Abstract(参考訳): 本研究では,CMS ADC2021のイベントレベル異常データを用いて,コントラスト学習を用いた自己教師付き密度ベース異常検出法を開発した。
AnomalyCLRのテクニックはデータ駆動であり、背景データの拡張を使用して、モデルに依存しない方法で非標準モデルイベントを模倣する。
置換不変なTransformer Encoderアーキテクチャを使用して、コライダーイベントで測定されたオブジェクトを表現空間にマッピングする。
バックグラウンド表現に基づいて訓練されたAutoEncoderは、表現空間内の様々な信号の異常スコアを計算する。
AnomalyCLRでは、生のデータベースラインと比較して、すべての信号のパフォーマンス指標が大幅に改善されています。
関連論文リスト
- Trajectory Anomaly Detection with Language Models [21.401931052512595]
本稿では,自己回帰因果アテンションモデル(LM-TAD)を用いた軌道異常検出のための新しい手法を提案する。
トラジェクトリをトークンの列として扱うことにより、トラジェクトリ上の確率分布を学習し、高精度な異常位置の同定を可能にする。
本実験は, 合成および実世界の両方のデータセットに対するLM-TADの有効性を実証した。
論文 参考訳(メタデータ) (2024-09-18T17:33:31Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly
Detection with Scale Learning [11.245813423781415]
我々は、データラベルとして特性-スケール-を導入することで、データのための新しいデータ駆動監視を考案する。
スケールは変換された表現にアタッチされたラベルとして機能し、ニューラルネットワークのトレーニングに十分なラベル付きデータを提供する。
本稿では,大規模学習に基づく異常検出手法を提案する。
論文 参考訳(メタデータ) (2023-05-25T14:48:00Z) - Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection [15.991784541576788]
ビデオとセグメントレベルのラベル指向の既存のアプローチは、主に異常データの表現の抽出に重点を置いている。
本研究では、正規データの表現と異常データの識別特徴の両方を学習するために、不確実性制御デュアルメモリユニット(UR-DMU)モデルを提案する。
我々の手法は、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2023-02-10T10:39:40Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Generative Anomaly Detection for Time Series Datasets [1.7954335118363964]
交通渋滞異常検出は知的交通システムにおいて最重要事項である。
本稿では,トラヒック異常検出のためのトラヒック密度推定を行うデータ駆動型生成手法を提案する。
Recall と F1-Score の両手法により, 最先端の混雑異常検出法と診断法を比較検討した。
論文 参考訳(メタデータ) (2022-06-28T17:08:47Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Categorical anomaly detection in heterogeneous data using minimum
description length clustering [3.871148938060281]
異種データを扱うため,MPLに基づく異常検出モデルの拡張のためのメタアルゴリズムを提案する。
実験の結果, 離散混合モデルを用いることで, 従来の2つの異常検出アルゴリズムと比較して, 競合性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-06-14T14:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。