論文の概要: Predictive World Models from Real-World Partial Observations
- arxiv url: http://arxiv.org/abs/2301.04783v1
- Date: Thu, 12 Jan 2023 02:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 15:14:14.459375
- Title: Predictive World Models from Real-World Partial Observations
- Title(参考訳): 実世界部分観測による予測世界モデル
- Authors: Robin Karlsson, Alexander Carballo, Keisuke Fujii, Kento Ohtani,
Kazuya Takeda
- Abstract要約: 本研究では,現実の道路環境に対する確率論的予測世界モデル学習のためのフレームワークを提案する。
従来の手法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
- 参考スコア(独自算出の注目度): 66.80340484148931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive scientists believe adaptable intelligent agents like humans perform
reasoning through learned causal mental simulations of agents and environments.
The problem of learning such simulations is called predictive world modeling.
Recently, reinforcement learning (RL) agents leveraging world models have
achieved SOTA performance in game environments. However, understanding how to
apply the world modeling approach in complex real-world environments relevant
to mobile robots remains an open question. In this paper, we present a
framework for learning a probabilistic predictive world model for real-world
road environments. We implement the model using a hierarchical VAE (HVAE)
capable of predicting a diverse set of fully observed plausible worlds from
accumulated sensor observations. While prior HVAE methods require complete
states as ground truth for learning, we present a novel sequential training
method to allow HVAEs to learn to predict complete states from partially
observed states only. We experimentally demonstrate accurate spatial structure
prediction of deterministic regions achieving 96.21 IoU, and close the gap to
perfect prediction by 62 % for stochastic regions using the best prediction. By
extending HVAEs to cases where complete ground truth states do not exist, we
facilitate continual learning of spatial prediction as a step towards realizing
explainable and comprehensive predictive world models for real-world mobile
robotics applications.
- Abstract(参考訳): 認知科学者は、人間のような適応可能な知的エージェントは、エージェントや環境の学習因果的メンタルシミュレーションを通じて推論を行うと信じている。
このようなシミュレーションを学習する問題は予測世界モデリングと呼ばれる。
近年,世界モデルを活用した強化学習(RL)エージェントがゲーム環境におけるSOTAの性能向上を実現している。
しかし,移動ロボットに関連する複雑な実世界の環境に世界モデリングアプローチを適用する方法を理解することは,未解決の問題である。
本稿では,現実の道路環境に対する確率的予測世界モデル学習のための枠組みを提案する。
本研究では,センサの蓄積観測から多種多様な観測可能な世界を予測可能な階層型vae (hvae) を用いてモデルを実装した。
従来のHVAE法では、学習のための基礎的真理として完全状態を必要とするが、HVAEが部分的に観察された状態のみから完全状態を予測することを学べる新しい逐次訓練法を提案する。
96.21iouを達成する決定論的領域の正確な空間構造予測を実験的に実証し、最良の予測を用いて確率的領域のギャップを62%満たす。
完全基底的真理状態が存在しない場合にhvaを拡張することにより、現実世界の移動ロボットアプリケーションのための説明可能で包括的な予測的世界モデルを実現するためのステップとして、空間予測の継続的な学習を促進する。
関連論文リスト
- Making Large Language Models into World Models with Precondition and Effect Knowledge [1.8561812622368763]
本研究では,Large Language Models (LLM) を2つの重要な世界モデル関数の実行に利用することができることを示す。
我々は、我々のモデルが生み出す前提条件と効果知識が、世界力学の人間の理解と一致していることを検証する。
論文 参考訳(メタデータ) (2024-09-18T19:28:04Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
一般世界モデルは、人工知能(AGI)の実現への決定的な道のりを表現している
本調査では,世界モデルの最新動向を包括的に調査する。
我々は,世界モデルの課題と限界について検討し,今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:37:07Z) - Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective [2.61072980439312]
内部世界モデルを開発するためのフォーマリズムの開発は、人工知能と機械学習の分野における重要な研究課題である。
この論文は、状態空間モデルを内部世界モデルとして広く用いられることによるいくつかの制限を識別する。
形式主義におけるモデルの構造は、信念の伝播を用いた正確な確率的推論を促進するとともに、時間を通してのバックプロパゲーションによるエンドツーエンドの学習を促進する。
これらの形式主義は、世界の状態における不確実性の概念を統合し、現実世界の性質をエミュレートし、その予測の信頼性を定量化する能力を向上させる。
論文 参考訳(メタデータ) (2024-04-24T12:41:04Z) - Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion [36.321494200830244]
Copilot4Dは、まずVQVAEでセンサ観測をトークン化し、次に離散拡散によって未来を予測する新しい世界モデリング手法である。
本研究は,ロボット工学におけるGPTのような非教師なし学習のパワーを,トークン化エージェント体験における離散拡散によって解き放つことを示す。
論文 参考訳(メタデータ) (2023-11-02T06:21:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - LOPR: Latent Occupancy PRediction using Generative Models [49.15687400958916]
LiDARの生成した占有グリッドマップ(L-OGM)は、頑丈な鳥の視線シーンを表現している。
本稿では,学習空間内での表現学習と予測という,占有率予測を分離する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-03T22:04:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in
Chicago [0.0]
本研究では,配車サービスにおけるゾーン間移動需要を予測するためのクラスタリング支援型アンサンブル手法(CEM)を提案する。
シカゴのライドソーシングトリップデータを用いて提案手法の実装と試験を行った。
論文 参考訳(メタデータ) (2021-09-08T04:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。