Adaptation of Distinct Semantics for Uncertain Areas in Polyp Segmentation
- URL: http://arxiv.org/abs/2405.07523v1
- Date: Mon, 13 May 2024 07:41:28 GMT
- Title: Adaptation of Distinct Semantics for Uncertain Areas in Polyp Segmentation
- Authors: Quang Vinh Nguyen, Van Thong Huynh, Soo-Hyung Kim,
- Abstract summary: This work presents a new novel architecture namely Adaptation of Distinct Semantics for Uncertain Areas in Polyp (ADSNet)
ADSNet modifies misclassified details and recovers weak features having the ability to vanish and not be detected at the final stage.
experimental results demonstrate the great correction and recovery ability leading to better segmentation performance compared to the other state of the art in the polyp image segmentation task.
- Score: 11.646574658785362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colonoscopy is a common and practical method for detecting and treating polyps. Segmenting polyps from colonoscopy image is useful for diagnosis and surgery progress. Nevertheless, achieving excellent segmentation performance is still difficult because of polyp characteristics like shape, color, condition, and obvious non-distinction from the surrounding context. This work presents a new novel architecture namely Adaptation of Distinct Semantics for Uncertain Areas in Polyp Segmentation (ADSNet), which modifies misclassified details and recovers weak features having the ability to vanish and not be detected at the final stage. The architecture consists of a complementary trilateral decoder to produce an early global map. A continuous attention module modifies semantics of high-level features to analyze two separate semantics of the early global map. The suggested method is experienced on polyp benchmarks in learning ability and generalization ability, experimental results demonstrate the great correction and recovery ability leading to better segmentation performance compared to the other state of the art in the polyp image segmentation task. Especially, the proposed architecture could be experimented flexibly for other CNN-based encoders, Transformer-based encoders, and decoder backbones.
Related papers
- Polyp-SES: Automatic Polyp Segmentation with Self-Enriched Semantic Model [7.424888086388194]
We propose an innovative method named Automatic Polyp with Self-Enriched Semantic Model'' to address limitations in existing approaches.
First, we extract a sequence of features from an input image and decode high-level features to generate an initial segmentation mask.
Using the proposed self-enriched semantic module, we query potential semantics and augment deep features with additional semantics, thereby aiding the model in understanding context more effectively.
arXiv Detail & Related papers (2024-10-02T03:34:23Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - RaBiT: An Efficient Transformer using Bidirectional Feature Pyramid
Network with Reverse Attention for Colon Polyp Segmentation [0.0]
This paper introduces RaBiT, an encoder-decoder model that incorporates a lightweight Transformer-based architecture in the encoder.
Our method demonstrates high generalization capability in cross-dataset experiments, even when the training and test sets have different characteristics.
arXiv Detail & Related papers (2023-07-12T19:25:10Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation [17.8181080354116]
We propose a feature enhancement network for accurate polyp segmentation in colonoscopy images.
Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM)
The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.
arXiv Detail & Related papers (2021-05-03T16:46:26Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.