論文の概要: Graph Laplacian for Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2301.04956v1
- Date: Thu, 12 Jan 2023 12:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 14:09:22.192600
- Title: Graph Laplacian for Semi-Supervised Learning
- Title(参考訳): 半教師付き学習のためのグラフラプラシアン
- Authors: Or Streicher and Guy Gilboa
- Abstract要約: そこで本研究では,Semi-Supervised Learning (SSL)問題に適応した新しいグラフラプラシアンを提案する。
これは密度とコントラストの両測度に基づいており、演算子に直接ラベル付きデータの符号化を可能にする。
- 参考スコア(独自算出の注目度): 8.477619837043214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning is highly useful in common scenarios where labeled
data is scarce but unlabeled data is abundant. The graph (or nonlocal)
Laplacian is a fundamental smoothing operator for solving various learning
tasks. For unsupervised clustering, a spectral embedding is often used, based
on graph-Laplacian eigenvectors. For semi-supervised problems, the common
approach is to solve a constrained optimization problem, regularized by a
Dirichlet energy, based on the graph-Laplacian. However, as supervision
decreases, Dirichlet optimization becomes suboptimal. We therefore would like
to obtain a smooth transition between unsupervised clustering and
low-supervised graph-based classification. In this paper, we propose a new type
of graph-Laplacian which is adapted for Semi-Supervised Learning (SSL)
problems. It is based on both density and contrastive measures and allows the
encoding of the labeled data directly in the operator. Thus, we can perform
successfully semi-supervised learning using spectral clustering. The benefits
of our approach are illustrated for several SSL problems.
- Abstract(参考訳): 半教師付き学習は、ラベル付きデータが少ないがラベルなしデータが豊富である一般的なシナリオで非常に有用である。
グラフ(または非局所)ラプラシアンは、様々な学習タスクを解決する基本的な平滑化演算子である。
教師なしクラスタリングでは、グラフラプラシア固有ベクトルに基づくスペクトル埋め込みがしばしば用いられる。
半教師付き問題に対して、一般的なアプローチは、グラフ-ラプラシアンに基づくディリクレエネルギーによって正規化される制約付き最適化問題を解くことである。
しかし、監督が減少するにつれて、ディリクレ最適化は準最適となる。
したがって、教師なしクラスタリングと教師なしグラフベースの分類の間のスムーズな遷移を求める。
本稿では,Semi-Supervised Learning (SSL)問題に適応した新しいグラフラプラシアンを提案する。
これは密度とコントラストの両測度に基づいており、演算子に直接ラベル付きデータの符号化を可能にする。
そこで,スペクトルクラスタリングによる半教師付き学習を成功させる。
私たちのアプローチの利点は、SSLのいくつかの問題に対して説明されています。
関連論文リスト
- Open-World Semi-Supervised Learning for Node Classification [53.07866559269709]
ノード分類のためのオープンワールド半教師付き学習(Open World SSL)は、グラフコミュニティにおいて実用的だが未探索の課題である。
オープンワールド半教師付きノード分類のためのIM Balance-AwareメソッドOpenIMAを提案する。
論文 参考訳(メタデータ) (2024-03-18T05:12:54Z) - Laplacian Canonization: A Minimalist Approach to Sign and Basis
Invariant Spectral Embedding [36.61907023057978]
スペクトル埋め込みは強力なグラフ計算手法であり、グラフトランスフォーマーの有効性から最近多くの注目を集めている。
従来の手法は、新しい不変量を学び、高い複雑さに苦しむために、コストのかかるアプローチを開発した。
本研究では,固有ベクトルの正準方向を直接求めることにより,あいまいさを解消する最小限のアプローチを検討する。
論文 参考訳(メタデータ) (2023-10-28T14:35:10Z) - Semi-Supervised Laplace Learning on Stiefel Manifolds [48.3427853588646]
グラフベースで教師付きサンプルを低ラベルレートで作成するためのフレームワークSequential Subspaceを開発した。
我々の手法は極めて低いレートで、高いラベルレートで達成できる。
論文 参考訳(メタデータ) (2023-07-31T20:19:36Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - BASiS: Batch Aligned Spectral Embedding Space [7.176107039687231]
スペクトルグラフ理論は、固体線型代数理論を背景とした強力なアルゴリズムを提供することが示されている。
固有接尾辞を直接学習する別のアプローチを提案する。
我々は,SOTAと比較して,NMI,ACC,グラスマン距離,直交性,分類精度の点で,学習したスペクトル埋め込みの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-11-30T13:07:59Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Model-Change Active Learning in Graph-Based Semi-Supervised Learning [5.174023161939957]
モデル変更」アクティブラーニングは、追加ラベルを導入して得られた変化を定量化する
後方分布のラプラス近似を用いて, 取得関数を効率的に近似できる凸損失関数の族を考える。
論文 参考訳(メタデータ) (2021-10-14T21:47:10Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Analysis of label noise in graph-based semi-supervised learning [2.4366811507669124]
機械学習では、目に見えないデータに一般化できるモデルを監督するためにラベルを取得する必要がある。
多くの場合、私たちのデータのほとんどはラベル付けされていない。
半教師付き学習(SSL)は、ラベルと入力データ分布の関係について強い仮定をすることで緩和する。
論文 参考訳(メタデータ) (2020-09-27T22:13:20Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。